A Context-Oriented Synchronization Approach

Dirk Draheim
Software Competence Center Hagenberg
Softwarepark 21
4232 Hagenberg, Austria

dirk.draheim@scch.at

ABSTRACT

Synchronization gained great importance in modern applications
and allows mobility in the context of information technology. Users
are not limited to one computer any more, but can take their data
with them on a laptop. Two common architectures have been devel-
oped recently, the Data-Centric Architecture as well as the Service-
Oriented Architecture. This paper compares two existing technolo-
gies for the implementation of a mobile client and introduces a new
approach, developed based on the requirements of a major insur-
ance company, the Context-Oriented Architecture. This approach
allows detection and resolution of conflicts within the context in
which the objects were changed, while still ensuring data correct-
ness and consistency. Therefore two new synchronization con-
cepts are introduced: the synchronization of complex objects and
dialogue-sensitive synchronization. An application implementing
this approach has been realized and successfully deployed.

1. INTRODUCTION

The context-oriented synchronization approach introduced in
this paper has been developed for the PreVolution project, executed
by the Software Competence Center Hagenberg (SCCH) and the
Institut Fuer Anwendungsorientierte Wissensverarbeitung (FAW)
on behalf of the Austrian Social Insurance Company for Occupa-
tional Risks (AUVA).

Approximately 3 million employed people and 1.3 million
school children and students are by law insured by this company.
The AUVA takes care of victims of occupational accidents and dis-
eases, a major goal therefore being the prevention of such accidents
and diseases. This is the domain where PreVolution is settled.

The aim of PreVolution is to support consultants visiting the
companies for advice and physical examination of their employees.
The consultants need to synchronize data available at the AUVA
onto their laptops to extend and modify the data at the company
site. Since several consultants can visit the same company simulta-
neously conflicts are possible and should be presented to the con-
sultant for resolution. Additionally, the synchronization process
has to perform several tasks like business processes during syn-
chronization, changing data as well as unique-constraint violation

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘08, August 24-30, 2008, Auckland, New Zealand

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Christine Natschlager
Software Competence Center Hagenberg
Softwarepark 21
4232 Hagenberg, Austria

christine.natschlaeger@scch.at

recognition. Based on these requirements, using a standardized
synchronization concept was not possible and an own synchroniza-
tion approach had to be implemented.

Therefore, this paper covers the challenges of implementing an
own synchronization process and contributes two new synchroniza-
tion concepts:

e Synchronization of Complex Objects
e Dialogue-Sensitive Synchronization

After an introduction of these concepts in Chap. 2 and a compar-
ison with other research work in Chap. 3, we will discuss a data-
centric as well as a service-oriented synchronization architecture
in Chap. 4, followed by the new approach of a context-oriented ar-
chitecture. Chap. 5 will describe the implementation of a context-
oriented synchronization in detail. Chap. 6 will present two ex-
isting Microsoft technologies for the implementation of a mobile
client. This will be the Smart Client Offline Application Block on
the one hand and the Synchronization Services for ADO.NET on
the other. Finally, Chap. 7 will present the most important lessons
learned.

2. NEW SYNCHRONIZATION CONCEPTS

In its first section, this chapter focuses on the definition of the
term conflict in order to follow up with a description of the new
synchronization concepts. The second section introduces the syn-
chronization of complex objects followed by the dialogue-sensitive
synchronization in the third section.

2.1 Conflicts Defined

A conflict can only occur when two databases have a copy of a
complex object CO with write-permission and the complex object
is changed on both sides. A complex object consists of objects that
conceptually belong together in the sense of real-world modelling.
For more information on complex objects see [1].

CO; complex object on the server; consists of data records from
different tables A ... Z called sub object aA . .. aZ with a A being
the root sub object.

CO; Copy of CO on client 1.

C'O4 Copy of CO on client 2.

tq1, tqe point in time when CO1, CO; are created/downloaded.
te1, te2 point in time when sub object al of CO; and sub object a.J
of COx are changed = CO} and CO) with t.; # 0 and t.o # 0
(changes occurred on both sides).

ts1,ts2 point in time when C'O}, CO} are synchronized.

tcs point in time when complex object is changed on server.
Precondition:

tar <ter <tsraswellas tgo < teo < ts2

Table Schema Complex Object

——— Schema,
7,

T~ _ o ie. objects that
N belong

\ conceptually

together in the

v sense of real-

world modelling

S __ - . -_ _ 7
Server Client

Figure 1: Synchronization Concept for Complex Objects

Assumption:

ts1 < ts2 which means client 1 synchronizes before client 2

= tcs = ts1 (When client 1 synchronizes, its version is saved on
the server).

A conflict will occur if:

taz < ts1 (and complex object is changed on both clients (see
precondition)).

Conflict will be detected at time ¢s2 when trying to set ¢.s again
without having seen the former version.

The detection of a conflict is possible by using number ranges
for unique identification (see Chap. 5.3). Every client as well as
the server has an own number range identifying all data records
uniquely. As every sub object, the root sub object of a complex ob-
jecthas a unique ID. CO; and C'O3 are copies of the same complex
object if the ID of the root sub object is identical.

The allowed operations are Insert, Update and Delete. Delete is
only allowed in a few tables which are checked out (see Chap. 5.5)
by the client. The conflict scenarios Update-Delete and Delete-
Delete are therefore not possible. For the deletion of objects and
the synchronization afterwards the concept of SyncServices (see
Chap. 6.2) is used and a fombstone table maintains all deleted
records. Through the synchronization process the entries in the
tombstone table are sent from client to server, executed on server
side and stored in the server tombstone table. When another client
downloads data it will receive the new entries from the tombstone
table and can delete the records locally.

Additionally, an Insert-Insert conflict is not possible either.
Since every client and server has an own number range, the IDs
will not be violated during synchronization.

The only possible conflicting operation is Update-Update.

2.2 Synchronization of Complex Objects

The synchronization concept for complex objects is shown in
Fig. 1. For example, Table A may contain the zip code and city
of an address. Table C contains the street name and street num-
ber. The objects conceptually belong together and form a complex
object address.

Objects that conceptually belong together in the sense of real-
world modelling are treated as one complex object so that conflicts
can be detected even if data records from different data tables have
been changed. A normal data replication approach would not detect
the conflict and merge the data without displaying it to the user. Our
approach offers a solution in this problem. Developers can specify
which object classes form a complex object class. This information
is then exploited at synchronization time.

There are three reasons why synchronizing complex objects can
be a better approach:

o The data model can be normalized and does not have to con-
sider dependent data. For example, an address can be split
up in different tables with the street name in one table and
the zip code in another table. If one user changes the street
name of a person and another user changes the zip code, a
merge can lead to a nonexistent address and is therefore un-
desirable. A conflict detection is necessary.

e The data model can change, nevertheless the same conflicts
are detected. For example, the data model changes and splits
up the person in two different tables. A data replication ap-
proach will detect two different conflict types based on the
tables instead of one conflict for the entire person. When
synchronizing complex objects the conflict will always be
deteced within the entire person.

e Detecting conflicts on objects instead of data tables is more
understandable for the user. For example, the complex object
contact person has data from five different tables and is dis-
played to the user in one dialogue. If the user changes data
on both, the client and the server he expects a conflict inde-
pendent of the specific data records he has changed. In a data
replication approach the user can change two different values
and whether or not he will run into a conflict depends on the
question if the two changed values are physically stored in
the same table. Eventually, this might be confusing for the
user.

Since contact person will be often used as an example for a com-
plex object it will now be explained briefly. A contact person is a
person being the contact person for a concrete company. One per-
son can work for several companies and can therefore be contact
person for more than one company. A contact person is a complex
object containing of data from five different data tables. The data
table person contains information about the person itself like name,
title and birth date, the data table contact person provides informa-
tion related to the company e.g. the e-mail address and telephone
number of the person in the company, the data table contact person
function contains the function of the contact person in the company
e.g. CEO or secretary and the last data table is address which is
connected to the person providing the private address and to the
contact person containing the business address.

2.3 Dialogue-Sensitive Synchronization

The dialogue-sensitive synchronization concept is shown in
Fig. 2. It offers a better decision support in the conflict resolu-
tion domain. The dialogue context where the change has occured
is saved and presented to the user in the conflict display.

In Fig. 2 class A may stand for a contact person and class B may
stand for a person. One physical person can be contact person for
two different companies. The first user changes the person in the
context of contact person Al on the server whereas the second user
changes the same person in the context of contact person A2 on
the client. The dialogue-sensitive synchronization concept allows
the user to see the conflict in the context of the contact person he
has changed, so the server version of the conflict shows the person
with contact person A1 and the client version shows the person with
contact person A2.

In this paper, “context” refers to the business logic view of ob-
jects rather than to the data view (e.g. person and contact person
are two different tables but in business view they form one complex
object).

Aggregate in
semantic sense

Dialogued

Dialogue2

aAl | textAl aA2 | textA2

aB | change aB | change

Server Client

Figure 2: Dialogue-Sensitive Synchronization Concept

This concept is not limited to the same complex object. The
first user can change a person in the context of the complex object
patient, whereas the second user changes the same person in the
context of a contact person.

3. RELATED WORK

Several papers have studied the issue of developing synchroniza-
tion for mobile environments (e.g. [2, 3]). To improve synchro-
nization, information about data provenance is needed, which is
covered in detail in [4] and [5].

In [4] Foster and Karvounarakis studied provenance in the area
of data replication for different devices. Replicas have to be trans-
formed for different devices, which leads to difficulties in view up-
date and maintenance.

In [5] Buneman et al. investigate data provenance and differ be-
tween "Why” and "Where” provenance. Data provenance describes
where data comes from and the process in which the data was cre-
ated or changed. "Why” refers to the source data that influenced the
existence of the new data and "Where” identifies the origin location
of the data.

In [6] Cui and Widom studied lineage tracing for data ware-
houses. During the integration of an operational data source into
a data warehouse, source data is typically transformed. Data lin-
eage covers the problem of tracing the derived data items to the
original source items.

The process by which the data arrived in the database is also im-
portant in our approach in order to identify the complex object in
which a data record was created or changed. Additionally, in a sim-
ple way this paper introduces a kind of “Who” provenance, where
”Who” stands for the user who made the change in the database.
This makes it possible to display the users, who made the changes
that lead to a conflict. Similar to [4] the information is stored as
metadata in the database in both cases. This is necessary to support
the user with conflict resolution.

In [7] transaction processing techniques are described and used
to monitor, control and update information. Transaction processing
keeps a database in a consistent state by completing all transactions
successfully or rolling them back otherwise. The book therefore
covers fault tolerance, concurrency control as well as recovery and
rollback. Keeping the database in a consistent state, identifying
autonomous operations and rolling back transactions in case of an
error is a demanding topic in most synchronization approaches.

In [8] Lee et al. studied data synchronization in mobile environ-
ment with focus on conflict resolution. For this implementation,

SyncML was selected. Aspects of the synchronization are the us-
age of Global Unique Identifiers GUIDs to uniquely identify a data
record and the usage of a change log which stores all changes that
have to be synchronized. The advantage of a change log is a better
performing synchronization since the single synchronization steps
do not need to be reconfirmed and the execution process can be op-
timized locally. The aim of their approach is an automatic synchro-
nization which needs a conflict resolution policy like originator-
win, recipient-win, client-win, server-win, duplication or recent-
data-win. From all these possible conflict resolution policies the
recent-data-win policy has been selected. An automatic conflict
resolution alleviates synchronization for the user and makes sense
when all changes are made by the same user on different devices.
However, when the changes are performed by different users, using
a policy is a problem, especially when the policy decides that one
change will overwrite the other. In contrast, our paper is based on
the assumption of a mobile environment with many different users
that change the same data in parallel, and it therefore offers an ap-
proach that supports manual conflict resolution.

Other related work about replication of data for mobile environ-
ments can be found in [9, 10]. In [9] Ratner et al. identified require-
ments for replication in a mobile environment. In [10] Barbara and
Garcia-Molina studied dynamic replicated data management algo-
rithms for generating and migrating replicated copies. Addition-
ally, several different replication approaches for mobile systems
are compared in [11]. Although a data replication approach might
make things easier, there are some disadvantages to it, as well as
requirements it can not fulfill. Chap. 4.1 will elaborate this fact.

4. SYNCHRONIZATION
ARCHITECTURES

In this chapter two existing approaches for exchanging data be-
tween client and server are illustrated and evaluated. The first ap-
proach is the Data-Centric Architecture followed by the Service-
Oriented Architecture. Since both approaches do not fit the require-
ments, a new architecture approach, the Context-Oriented Architec-
ture has been developed and is discussed in Chap. 4.3.

4.1 Data-Centric Architecture

In a Data-Centric Architecture shown in Fig. 3 the database of
the server is fully or partly replicated to the client database and data
differences are merged. Changes can be tracked and conflicts can
be detected.

Oracle supports synchronization between two Oracle databases
with conflict detection [12]. However, the conflict resolution is
based on simple rules like client-wins, server-wins or a custom pro-
grammatic resolution.

The advantages of this approach are that a lot of research has
been made in this area and that well tested solutions are available.
The disadvantages are that for this approach both databases must
be compatible.

Additionally, the server database must be reached directly by the
client. This can be acceptable when the server database is only ex-
posed to a secure intranet but might be a security risk if the clients
access from the Internet as required in the approach described in
this paper. Moreover, a conflict resolution policy will automatically
override changes of one user. Even if there would be the possibil-
ity to display the conflict and let the user decide, a conflict would
only be displayed based on the actual table but not on the context
in which the object was changed. See Chap. 5.6 for more details on
context-oriented conflict detection and resolution. Another disad-
vantage of Data-Centric Architecture is the difficulty of replicating

X Service-Oriented Architecture
/—Cllent
I —
Graphical Connection /| ¥

User Interface|| Manager Web W1
1 Service

Web Service Facade

Workflow and Business Logic\f#® 2)réorkﬂow and Business Logic

N

A\

—

Replicatiol

J/

Data-Centric Architecture

Figure 3: Data-Centric vs. Service-Oriented Architecture

parts of a table based on objects as discussed for the SyncServices
in Chap. 6.2. The required where-statements will be quite com-
plex. Last but not least it is sometimes necessary to change data
during replication, e.g. check data out and save it without a lock
on the client or load data and save it read-only on the client. After
considering these issues, a data-centric approach was not the right
choice to fulfill all requirements.

4.2 Service-Oriented Architecture

The goal of Service-Oriented Architecture (SOA) (also shown in
Fig. 3) is loose coupling between interacting components. There-
fore, a service, which can be a Web Service, is offered on the net.
The business logic on the client calls the server-sided Web Service.
The data model of client and server can be different and in addi-
tion, the client is responsible for conflict detection and resolution,
which requires custom-implemented conflict handling. Advantages
of SOA are the independence of the database, so databases from
different vendors can be used, as well as the possibility to pro-
vide better security mechanism for the server database. A disad-
vantage of SOA compared to Data-Centric Architecture is worse
performance. However, the concept of synchronization over Web
Services is also used in the Context-Oriented Synchronization Ap-
proach.

4.3 Context-Oriented Architecture

As both described architectures are not capable of detecting and
resolving a conflict based on the context, a new approach, the
Context-Oriented Architecture, is developed and shown in Fig. 4.
Similar to the Service-Oriented Architecture, this approach uses a
Web Service for communication with the server. The synchroniza-
tion however is based on objects which are created using an O/R-
Mapping tool. Every object has data from the database which is
not only composed of a single relational record but several records
across many tables. Client and server have relational databases with
an additional table to maintain the metadata of the objects and save
the context of changes.

Compared to the Data-Centric Architecture, the data model on
client and server has to be similar, to be able to create compati-
ble objects. However, a Data-Centric Architecture disposes of only
basic conflict handling capabilities and does not support business
processes during synchronization. As an example in PreVolution
it is a requirement, that an offline created company has to be for-
warded to the supervisor for approval during synchronization.

The Context-Oriented Architecture is similar to the Service-
Oriented Architecture as both use Web Services for communica-
tion and benefit from loose coupling. Still, Service-Oriented Archi-
tecture is defined as requiring independent and committed transac-

Client
/-/-CIient:

Graphical Connection W S Eae
User Interface| Manager

Workflow and Business Logic| j /. Workflow and Business Logic

N . .

AN J AN J

/—Server

Figure 4: Context-Oriented Architecture

tions, which is not the case in our approach. The synchronization
requires several dependent Web Service calls.

The advantage of the Context-Oriented Architecture is that as it
is based on objects, it is also possible to synchronize defined subsets
of the database and still guarantee consistency. This is an impor-
tant feature as illustrated in the following example: Some tables on
the server-sided database are insert-once restricted and data from
these tables can be kept offline and changed several times until the
user releases and commits the data. Nevertheless it is possible to
synchronize the rest of the data in between, providing better data
safety and performance through partial upload.

S. CONTEXT-ORIENTED
SYNCHRONIZATION

This chapter describes the implementation of the Context-
Oriented Synchronization Approach in PreVolution in detail. The
first section gives an overview of the architecture, the second
briefly describes the Genome O/R-Mapping tool and the third sec-
tion explains data model and number ranges. The fourth section
deals with data upload from client to server, whereas the fifth sec-
tion discusses the opposite direction, downloading data from server
to client. The sixth section covers the demanding topic of conflict
detection and resolution and the last section elaborates on some
challenges encountered while implementing the Context-Oriented
Synchronization Approach.

5.1 Architecture

This section describes the architecture of PreVolution, as dis-
played in Fig. 4. On the client side Oracle XE is used as local
database, while Oracle Database 10g is used on the server side.

In a previous implementation Microsoft SQL Desktop Engine
(MSDE) was used on the client, but incompatibilities between the
two databases were encountered (e.g. Unique in SQL allows only
one NULL value, whereas Oracle can have several NULL val-
ues, or slightly different data types between the two databases)
so MSDE was exchanged for Oracle XE. However our new syn-
chronization approach does not need two databases from the same
vendor, it works with MSDE as well.

Both, client and server, use Genome (see Chap. 5.2) as Data Ac-
cess Layer and O/R-Mapping tool.

The Business Logic (shown in Fig. 5) is identical on client and
server, so there is no difference between working online or offline.
The client uses the ILogic Interface and depending on the client be-
ing online or offline, the specific instance of ILogic is either Logic-
ToServer or LogicToDatabase. When being online, LogicToServer

is called, the call is forwarded to the Web Service Fagade and af-
ter calling a Controller the logic in LogicToDatabase is executed,
which queries the server-sided Oracle database. When the client is
offline, LogicToDatabase is called directly and queries are executed
on the local Oracle XE instance.

ILogic

online

LogicToServer

l

Web Service Facade

offline

LogicToDatabase

Controller

Figure 5: Business Logic

Finally the client provides the graphical user interface and the
connection manager from the Smart Client Offline Application
Block (see Chap. 6.1), whereas the server includes a Web Service
Facade.

5.2 O/R-Mapping with Genome

Genome [13] developed by TechTalk is used as Data Access
Layer. Genome is an O/R-Mapping tool for .NET and supports Or-
acle, Microsoft SQL Server and IBM DB2 as databases. Genome
supports lazy loading (objects of a result set or attributes of an ob-
ject are not loaded until they are needed) as well as optimistic and
pessimistic locking.

Optimistic locking allows concurrent access, however when sev-
eral clients try to commit changes, only the first client commits
successfully and the other clients receive an exception. The disad-
vantage of optimistic locking in Genome is that an additional ver-
sion field is necessary in every database table. As this version field
has to be set by every application updating a row in the database,
optimistic locking was not possible in the approach described in
this paper since other applications use the same database.

The advantage of pessimistic locking is that the client knows up-
front that data is locked and that it will not lose any changed data.
In the present approach pessimistic locking is used and data will
only be committed once the lock is released. Additionally the com-
munication with the database is executed in a context which differs
between ReadOnlyContext for read-only and ShortRunningTrans-
actionContext for read/write.

The description of the data model in Genome is XML-based.
For each table an Entity is created and these Entities are combined
to Objects. There are two different kinds of objects: the first are
the normal Genome-Objects, which are high-performance, but can
not be transmitted over a Web Service. The second type is the
Data Transfer Objects (DTOs), which are defined through Genome
Views and can be transmitted over a Web Service. A disadvantage
of Genome is that it only offers methods to serialize the Entities
based on a View into a DTO but not to deserialize them on the
other side.

Supported query languages are Object Query Language (OQL)
and LINQ, which is new and was not supported until October 2007.
Although Genome is an important and very beneficial tool in Pre V-
olution, it has no mechanism for either synchronization or conflict
handling.

5.3 Data Model and Identification

As common in many projects, the database on the server is not
only used by PreVolution but also by other existing applications in-
side the AUVA. Therefore changes in the existing data model are
difficult. Global Unique Identifiers (GUID) as used in [8] would
have been the ideal method for data record identification. How-
ever, every table has a 64-bit long number as a primary key. An-
other approach was using negative IDs on the client for new records
and replacing them later during uploading, but this is complex and
costly and conflicts would have been possible on the server with
new records from other applications. The best-fitting approach was
using number ranges on server and client side. A new client with-
out a number range, requests the number range from the server and
all created records on the client receive an ID from this range. All
used ranges are maintained in a database table on the server.

Every table on client and server has eight additional columns
containing user and date information in columns CreatedBy, Date-
Created, ModifiedBy, DateModified, LockBy, LockDate, and Lock-
Type for recognizing changes and SyncDate for the synchroniza-
tion. The three primary columns are DateModified, LockType and
SyncDate. Whenever a change occurs DateModified is set to the
current date. LockType allows checking out data from the server
or save read-only data on the client. Every lock is saved in this
column. Very important for the synchronization is the client-
sided SyncDate column, which is not populated on server-side.
It contains the date at which the record was last loaded from the
server. Microsoft SyncServices (see Chap. 6.2) have less but simi-
lar columns for maintaining changes.

Another aspect is the SyncTable. This table enables Context-
Oriented Synchronization and allows context-based conflict reso-
lution by saving all objects. Besides the ID this table provides
the columns ObjectType, ObjectReference, conflicts (bool), Sync-
CreatedDate, SyncModifiedDate and LastSyncDate. When down-
loading a contact person with trailed records from the tables per-
son, address and contact person functions, one entry would be in-
serted in the SyncTable. ObjectType would be contact person, Ob-
JjectReference the ID of the contact person in the contact person
table and conflict would be false. LastSyncDate and SyncModified-
Date would be the same date, which has been transmitted from the
server. When the client is now offline and changes a property in
the table contact person function, the actual date is saved in Date-
Modified of the contact person function table and additionally in
the SyncModifiedDate of the SyncTable for the concrete complex
object contact person. When synchronizing the changed data can
be extracted from the SyncTable by comparing SyncModifiedDate
with LastSyncDate, and if a conflict occurs in the function, the con-
flict can be resolved within the context of the contact person. For
more information on conflicts see Chap. 5.6.

The next change in the data model is a server-side table called
ReplicationTable.When the client starts synchronization, the ID
and the name of every complex object (e.g. person) that has to
be transmitted to the client is stored in this table. The first advan-
tage is that packages of e.g. 100 persons can be requested by the
client and stored in the local database. It is not necessary to send
all data at once. The second advantage is that the client can abort
the synchronization process after each package and, for example,
continue the next day. In this case the ReplicationTable is updated
with data that changed in the meantime, and the client can continue
the synchronization process.

The data models on client and server are largely the same, al-
though some tables are only used by the client or by the server.
However there is one additional role on the client which has the
right to delete records from all tables. No role has the right to

Server Client

Server changes Data Client changes other Data

Partial Upload

A

Download

Client changes Data

Full Upload (Clear DB)

Figure 6: Synchronization Flow

delete records on the server.

5.4 Upload

As already mentioned before, Uploading in this paper character-
izes the upload of client data to the server. There are two differ-
ent types of uploads, namely full upload and partial upload (see
Fig. 6). Both identify all offline changed data and send them to the
server. If conflicts occur, both will detect the conflicts and ask the
user to resolve them. However, the partial upload checks if there
are offline changed data available before starting the upload, and
locks on the server will not be removed. The full upload does not
check for changes, it will always start the upload and if nothing has
changed, at least the locks will be removed on the server.

The partial upload is used implicitly when the user wants to
download data. The implicit upload before downloading is nec-
essary, because only the upload can detect conflicts.

The full upload is started explicitly by the user and after sending
all changed data to the server and resolving potential conflicts, the
local database will be largely cleared, except of a few tables, which
need to be always available offline and are therefore never cleared.

There is one more aspect that needs to be mentioned, because
it is one of the challenges described in Chap. 5.7. Addresses are
standardized and allowed to exist only once in the database. When
the user creates offline a new address for a company and this ad-
dress already exists on the server, during upload the objects loaded
from the client are changed to point to the existing address on the
server. The existing address is sent back to the client and stored
in the database. All objects are changed to point to the existing
address from the server and afterwards the client-sided address is
deleted.

5.5 Download

Downloading refers to the download of data from server to client.
A download can only occur after a partial upload, so it is not pos-
sible to run into conflicts during downloads.

There are three different types of data to be downloaded:

e The first group is data that are downloaded read-only. The
existing workflow as well as old orders and documents be-
long to this group.

e The second group consists of data that is checked out from
the server, so the server gets a lock and the data can only be
changed on the client. For example, the current order and the
route belong to this group. No other user should change the

same order at the same time. In these two groups conflicts
are not possible, because data are only changed on one side.

e However, there is a third group which includes data that can
be changed on both sides. Contact persons, patients or eco-
nomic domains belong to this group.

If the user downloads again, the client-sided LastSyncDate is
compared with the server-sided ModifiedDate and changed data is
downloaded again.

If the user has not yet downloaded or performed a full upload be-
fore, and the connection breaks, he can still work offline. There are
data, which are always available offline, and these data are enough
for working with the application.

5.6 Conflict Detection and Resolution

As already mentioned, conflicts are only detected during up-
load. The client sends its changed data and the LastSyncDate to
the server, and if the server has changed the same data, a conflict is
detected.

Conflicts are detected and displayed context-based, this means
that if the client changes the address of a person from Main Street
3a to Main Street 3b and another user changes the address of the
same person to Main Street 3c, a conflict resolution without con-
text would display Main Street 3b versus Main Street 3c. The user
would not be able to decide, because he would not know why and
for whom the address was changed. It would not be possible to
determine the person, for which the address was changed, when
several objects like other persons and companies point to the ad-
dress too. However, the Context-Oriented Synchronization knows
in which context the address was changed and is able to detect and
display the conflict for the person with the address.

There are different possibilities to define a conflict. The first kind
of conflict is when an attribute is changed on both sides and there
is no possibility to merge. This would be the case in the address
example above, because 3b and 3c cannot be merged. Another type
of conflict is characterized by being based on a complex object in-
stead of a single attribute. For example, the client can change the
e-mail address of a contact person and a user on the server changes
the name of the person (note that contact person and person are
two different tables). Without context-oriented conflict detection
it would not be possible to detect this conflict during upload, be-
cause when uploading the persons, no conflict would occur. When
uploading the contact persons later, there would be no conflict ei-
ther. In our approach it is possible to detect this conflict because
the SyncTable tracks that something has changed in the context of
a contact person and uploads the whole contact person as one com-
plex object.

All conflicts are shown to the user when he is online. He sees the
server version with the name of the user who changed it and his ver-
sion with the later changed preselected and can decide which one
to take. The server version of conflicts are regularly updated, since
it is possible that another user changes the server version again.
When the user resolves a conflict, it is again checked whether the
server version has changed in the meantime. If it has, there is a
conflict on a conflict and the user has to decide again which version
to take.

5.7 Challenges

The first challenge in this project was the server-sided data
model, which was not allowed to be changed. Number ranges have
to be used instead of Global Unique Identifiers and the additional
columns for change tracking had to be inserted into separate tables.
A view then combined the two tables. As deletion on server side is

only allowed for a few tables, there have been some cases, where
the ID from the server has to be taken and replaced on the client
during upload e.g. for standardized addresses.

Another challenge are unique constraints which are not directly
part of the synchronization process but problems can occur during
upload. The synchronization will not treat this as a conflict but it
has to know all unique constraints and if during upload one con-
straint is violated, the user has to be informed that he has to correct
the data offline before trying to upload again.

Error handling and recovery was another challenge. When an
exception occurs during synchronization it is important that both
databases remain in a consistent state. This is achieved on the
one hand by using the Genome transaction context as described
in Chap. 5.2. Using this approach allowed using Genome’s generic
transaction manager instead of using the specific transaction man-
ager provided by an underlying database. A ShortRunningTrans-
actionContext is opened and all changes are defined until one com-
mit persists all changes at once into the database. Therefore partly
committed data within one context will never occur.

On the other hand all methods are designed such that they are in-
dependent from each other. With the help of the ReplicationTable
described in Chap. 5.3 it is possible to download independent pack-
ages of person objects. After saving a package in the local database
the client sends a delivery receipt for the package. If the package
is already stored locally and an exception occurs when sending the
receipt, the server will resend the same package. If the client does
not get a delivery receipt from the server after uploading, it will
also resend the data.

As a result of an exception it is possible that the data in the lo-
cal database has different synchronization dates, however this is
also possible when the user stops the synchronization manually and
does not limit the use of the application.

The last challenge and still not resolved at the moment is the
complete rollback of the synchronization process. One requirement
demands that a rollback is always possible throughout the entire
synchronization process. However, some data are stored on the
server and some on the client and there are several Web Service
calls in between. As the Genome transaction can not be kept open
for such a long duration, this is not easily solvable. However, there
are other options, for example to allow a rollback after each step
during upload and download as described above so that the data are
always consistent.

6. SYNCHRONIZATION TECHNOLOGIES

After describing the Context-Oriented Synchronizaion Approach
and a possible implementation, this chapter will briefly introduce
two promising technologies from Microsoft. The first is the Smart
Client Offline Application Block [14] followed by the Sync Services
for ADO.NET [15]. Both technologies provided ideas for and allow
comparison with the new approach.

6.1 Smart Client Offline Application Block

The Smart Client Offline Application Block (SCOAB) [14] is
an Application Block from Microsoft that has been published first
in 2004, including best practices for the design of an architecture
and for solving problems in the context of online/offline scenarios.
SCOAB comprises best practices, design patterns and examples.
Additionally, the entire code is available as well, allowing to adapt
the Application Block for individual needs. SCOAB is meant to
support the development of offline-capable applications. There-
fore, the data are stored on the client and SCOAB takes care of
the synchronization as soon as a connection is available.

SCOAB uses DataSets for conflict detection. When implement-

ing a prototype in 2005, DataSets did not support conflict resolu-
tion, but basic abilities were added in the meantime. For communi-
cation with the server a Web Service is used and messages are sent
through Microsoft Message Queuing (MSMQ). For data manage-
ment In-Memory, Microsoft Desktop Engine (MSDE) or Microsoft
SOL Server can be used. SCOAB uses several threads, one for the
application, a second for the connection manager and a third for
the messages. Additionally, SCOAB includes an extensive evalua-
tion of possible security risks, as well as suggestions for testcases.
SCOARB is based on .NET-Framework 1.1 but can be upgraded to
.NET-Framework 2.0.

A prototype at the beginning of PreVolution was developed to
evaluate SCOAB. However, SCOAB was largely not included in
the final version of the project since DataSets were not sufficient.
One component of SCOAB, the connection manager, which de-
tects if a connection to the server is available and allows switching
between online and offline modes, has been integrated into PreVo-
lution in slightly modified manner.

6.2 Synchronization Services for ADO.NET

The SyncServices for ADO.NET [15] are a completely new part
of the Microsoft Sync Framework (MSF) and .NET Framework 3.5,
which is integrated in Visual Studio 2008. SyncServices allow four
different synchronization methods:

e Snapshot
e Incremental Download (Insert, Update, Delete)
e Upload (Insert, Update, Delete)

e Bidirectional Synchronization with Conflict Handling

Microsoft SQL Server Compact Edition 3.5 (CE) has to be used as
local database, which is only slightly different from Microsoft SOL
Express Edition, but takes less space, is stored in one file and can
store data up to 4 GB. The database on the server can be Microsoft
SQL Server or another database like Oracle or DB2. SyncServices
allow communication over Web Services. SyncTable objects de-
termine the tables to be synchronized; several SyncTables can be
grouped into a SyncGroup, which is always synchronized within
one transaction, so a rollback is possible.

SyncServices were evaluated for approximately one month in
several prototypes and demos but were not appropriate for our re-
quirements due to the following issues:

e Conflict resolution is not fully developed at the moment,
some conflicts have to be resolved on the server or the pro-
cess has to be suspended.

e SyncServices are completely new, Visual Studio 2008 has
to be used and documentation is rare. Additionally, Micro-
soft SQL Server Compact 3.5, which has some compatibility
problems with Oracle, is a must on the client.

o Changes while downloading (e.g. setting a lock) cannot be
done during the synchronization process but require a sepa-
rate SQL-Statement. However, this would be detected as a
change and propagated to the server during the next synchro-
nization process.

o Synchronization of objects is not possible, instead tables are
synchronized. The records in a table can be restricted using
Select-Statements. These statements would be very exten-
sive, because there is no need to download all two million

addresses but only those connected to a person, a contact per-
son, a company or other objects the user selects in his down-
load list, which likely will result in approximately 600.000
addresses. The list of IDs in the Select-Statement will never-
theless be quite large.

Restriction of the data amount is only possible on the server
but not on the client. A partial upload from the client to the
server which offers better performance on the one hand, and
allows to synchronize data with insert-once restriction on the
server on the other hand, is not possible with one Sync Agent.
However, using different Sync Agents leads to other prob-
lems including rollbacks. Normally, rollback of transactions
is supported in an efficient manner, but not possible when
using different Sync Agents.

The last issue is that the code is not available, as it would be
in SCOAB or a custom-implemented approach. Therefore,
the code cannot be extended and necessary changes cannot
be implemented.

7. LESSONS LEARNED

In this project lessons were learned regarding workflow manage-
ment [16], requirements engineering [17] as well as regarding
synchronization. There is a huge number of different approaches
for synchronization and it is difficult to decide. Evaluation takes
some time and sooner or later a decision has to be made. SCOAB
and SyncServices were the main but not the only evaluated tech-
nologies, however no technology fitted and an own approach had to
be implemented. Building an own synchronization solution is not
as easy as it first seems. Synchronization is something that should
work in the background and not bother the user until it is really nec-
essary; nevertheless, synchronization is a main component of every
online/offline application and is quite complex. Every possible sce-
nario can and will happen, e.g. conflict during conflict resolution.
However, implementing an own synchronization approach is pos-
sible.

Another important lesson is that also if a synchronization ap-
proach does not necessarily need two databases from the same ven-
dor or a similar data model, it is always an advantage to do so. If it
is possible to have data in the same structure, schema mapping can
be avoided, thereby reducing complexity and effort.

The last important lesson learned is that a local database has
limits compared to the server database. Knowing that an offline
database is available may tempt to think that it would also be nice to
have more and more data offline. However, an offline database has
a size limit and besides the synchronization process should be kept
simple and fast, so it is highly advisable to download only what is
really necessary and helpful, and if some data are only needed for
information porposes, they should be made read-only in order to
reduce the possibility of conflicts.

8. ACKNOWLEDGEMENTS

The authors gratefully acknowledge support by the Austrian
Government, the State of Upper Austria, and the Johannes Kepler
University Linz in the framework of the Kplus Competence Center
Program. Special thanks go to all project members of PreVolution,
working and have worked in this project.

9. REFERENCES
[1] Dirk Draheim and Gerald Weber: Form-Oriented
Analysis: A New Methodology to Model Form-Based
Applications, Springer Verlag, 2005.

[2] Shirish Hemant Phatak and B. R. Badrinath: Conflict
Resolution and Reconciliation in Disconnected
Databases. 10th International Workshop on Database
and Expert Systems Applications (DEXA), 1999.

[3] Alan Demers, Karin Petersen, Mike Spreitzer, Douglas
Terry, Marvin Theimer, and Brent Welch: The Bayou
Architecture: Support for Data Sharing among Mobile
Users. Proceedings IEEE Workshop on Mobile
Computing Systems & Applications, 1994.

[4] J. Nathan Foster and Grigoris Karvounarakis.
Provenance and Data Synchronization. IEEE Data
Engineering Bulletin, Volume 30, 2007.

[5] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan.

Why and where: A Characterization of Data

Provenance. In International Conference on Database

Theory (ICDT), 2001.

Yingwei Cui and Jennifer Widom: Lineage Tracing for

General Data Warehouse Transformations. Proceedings

of the 27th International Conference on Very Large

Data Bases (VLDB’01). 2001.

Jim Gray and Andreas Reuter: Transaction Processing:

Concepts and Techniques, Morgan Kaufmann, 1993.

YoungSeok Lee, YounSoo Kim, and Hoon Choi:

Conflict Resolution of Data Synchronization in Mobile

Environment. Computational Science and Its

Applications - ICCSA, 2004.

[9] David Ratner, Peter Reiher, Gerald J. Popek, and
Geoffrey H. Kuenning. Replication requirements in
mobile environments. Mobile Networks and
Applications, Volume 6, 2001.

[10] Daniel Barbara and Hector Garcia-Molina. Replicated
Data Management in Mobile Environments: Anything
New Under the Sun? Applications in Parallel and
Distributed Computing, 1994.

[11] Astrid Lubinski and Andreas Heuer: Configured
replication for mobile applications. Proceedings of the
IEEE International Baltic Workshop on DB and IS,
BalticDB&IS’2000, 2000.

[12] Philip Stephenson. Oracle Database Lite 10g Technical
White Paper, May 2005.

[13] TechTalk. Genome - Generative Object Mapping
Engine, White Paper, 2006.

[14] Microsoft. Smart Client Offline Application Block.
URL, http://msdn2.microsoft.com/en-
us/library/ms998460.aspx,

2004.

[15] Microsoft. Sync Services for ADO.NET. URL,
http://msdn2.microsoft.com/en-us/sync/bb887608.aspx,
2008.

[16] Theodorich Kopetzky and Dirk Draheim. Workflow
Management and Service Oriented Architecture. SEKE
2007, pages 749-750, 2007.

[17] Mario Pichler, Hildegard Rumetshofer, and Wilhelm
Wabhler. Agile requirements engineering for a social
insurance for occupational risks organization: A case
study. In RE ’06: Proceedings of the 14th IEEE
International Requirements Engineering Conference
(RE’06), pages 246-251, Washington, DC, USA, 2006.
IEEE Computer Society.

[6

—_

[7

—

[8

—

