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Foreword 
 

Proliferation of database-driven web sites has brought upon a plethora of applications where 

different notions of user and context information are of paramount importance. Monitoring and 

trading stock portfolios, blog aggregation and news notification, dataset sharing, weather 

tracking, and even simple search are just a few examples of applications that can all be 

personalized based on users’ individual or social profiles and can be affected by their 

operational context, which may include the location, time, and other features of their 

environment. The trend towards more user-centric, personalized, and context-aware database 

systems requires new models and techniques able to provide users with the 'right information' 

at the 'right time' in the 'right place' and may affect database system functionality at several 

levels.  

The PersDB 2008 workshop (http://persdb08.stanford.edu/) aimed at providing a forum for 

presentation of the latest research results, new technology developments, and new applications 

in the areas of personalized access, profile management, and context awareness in database 

systems. PersDB 2008 is the successor of the PersDL 2007 workshop (http:// 

www.dblab.ece.ntua.gr/persdl2007/), and was kindly sponsored by the DELOS Association for 

Digital Libraries (http://www.delos.info/index.php?option=com_content&task=view&id=614 

&Itemid =342). 

The workshop was held in Auckland, N. Zealand, on August 23, 2008, in conjunction with the 

VLDB 2008 Conference. It included 1 keynote talk, 7 paper presentations, and a panel. All 

papers as well as an extended abstract of the keynote talks are included here.  

Letizia Tanca (Politecnico di Milano) gave the keynote talk. Letizia is an expert in context-aware 

database design, data management for mobile and pervasive systems, and dynamic, 

semantics-based database integration. In her talk, she analysed the most interesting 

approaches to context modeling and usage and particularly focused on a context model and a 

methodology appropriate for data tailoring.  

 

The program committee for this workshop consisted of 22 members and was chaired by Vassilis 

Christophides (IST-FORTH, Hellas) and Georgia Koutrika (Stanford University, USA). It 

accepted 7 papers out of 11 submissions.  

 

We would like to thank all the people who have supported and helped in the organization of this 

workshop: the authors and presenters of the papers, the reviewers for their effort and help in 

preparing the workshop’s program, and the organizers. We would also like to thank Yannis 

Stavrakas (Institute for the Management of Information Systems, Hellas) for maintaining the 

workshop’s web site and preparing the e-proceedings. 
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ABSTRACT
Recent work on building semantic search engines has given
rise to large graph-based knowledge repositories and facil-
ities for querying them and more importantly, ranking the
results. While the ranking provided may prove to be accept-
able in general, for a truly satisfactory search experience, it
is necessary to tailor the results according to the user’s in-
terest. In this paper, we address the issue of personalizing
query results in the specific setting of graph-based knowl-
edge bases. In particular, we address two important issues:
i) construction of the user profile based on the inference of
the user’s interest and ii) a formal model for personalized
scoring which incorporates the user’s interest. Preliminary
experimental results show that our techniques are indeed
promising.

1. INTRODUCTION
Personalization of search has been named as one of the

next big challenges in information retrieval. Understanding
the user and the context of her search is crucial in satisfy-
ing her information need and drastically reducing the time
needed to find the “right” information. Personalization re-
search has encompassed a wide variety of tasks, including,
analyzing user click-stream data, generating user profiles,
result re-ranking techniques based on user profiles, architec-
tures for personalization, etc. [15, 13]. The main focus of
this research is on the personalization of search results in
the context of documents and keyword-based web search.

However, while the web is the largest repository of data,
it is also, for the most part, unstructured. Several recent
efforts have gone towards the building of large “knowledge”
repositories – knowledge bases containing structured data
extracted from the web in the form of entities and relation-
ships (for example, Freebase1, YAGO [14], etc.). Systems
such as NAGA [7] and ExDBMS [3] provide query processing

1http://www.freebase.com

2nd International Workshop on Personalized Access, Profile Management,
and Context Awareness: Databases (PersDB’08 ), August 23, 2008,
Auckland, New Zealand

facilities on such repositories. Semantic web standards such
as RDF and SPARQL aim at supporting a consistent rep-
resentation and querying of such semantic, structured data.
With the growth of structured knowledge bases, search re-
sult ranking and personalization again become key issues in
satisfying a user’s information need.

“Hildegard Knef”

Hildegard_Knef

means

Physicist

Singer

Albert_Einstein

Scientist

Person

Entity
subClassOf

c
la

s
s
e

s
in

d
iv

id
u

a
ls

w
o

rd
s

“Einstein”

Object

means

subClassOf

subClassOf

subClassOf

type

type

subClassOf

“Britney Spears”

Britney_Spears

bornIn

Ulm

Location

type

type

bornIn

American Pop Singer

subClassOf German Singer

subClassOf

means0.99 0.99 0.95

0.95

0.98

0.99

0.99

0.95

0.99

0.95

0.95 0.95

0.97

0.90
0.96

0.95

subClassOf

0.99

Figure 1: Portion of the YAGO knowledge graph.

In this paper, we are concerned with personalizing query
results on graph-based knowledge bases. In particular, we
develop techniques for personalization in the context of NAGA
[7], a semantic search engine. In addition to providing query
processing over a large knowledge base, NAGA also provides
a scoring model which can be used as a basis to test our tech-
niques. NAGA’s knowledge base consists of several millions
of facts (see YAGO [14] for details), provides a graph-based
query language and returns graphs as results. A snippet
of the knowledge base is shown in Figure 1. NAGA’s data
model is a graph, in which the nodes represent entities and
the edges represent relationships between the entities. An
edge in the graph with its two end-nodes forms a fact. As
facts have been automatically extracted from the Web each
one is associated with a confidence value to reflect the trust
in the extraction process. It is possible to ask queries such
as “When was Einstein born?” (<Einstein bornIn $x>),
“What do Britney Spears and Hildegard Knef have in com-
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mon?” (<Spears connect Knef> – they are both singers),
etc. The results returned by NAGA are ranked according to
a scoring model which takes into account the confidence of
facts in the results (higher confidence facts are preferred), in-
formativeness (“popular” facts preferred) and compactness
(“tightly connected” answers preferred).

NAGA’s scoring model has been shown previously to be
useful and effective (see [7] for details). Our aim is to fur-
ther enhance its effectiveness by incorporating user interest
into the scoring model. As a concrete example, suppose a
user issues the query <$x isa singer> in order to get a list
of singers. The original NAGA scoring model ranks “Brit-
ney Spears” at the top. This would be acceptable if there
were no prior information about the kind of music the user
prefers. However, if it was known that the user had shown
an interest in German music (possibly through a previous
query or browsing session), then ranking “Hildegard Knef”
and other German singers at the top might be of more in-
terest to her.

Our work addresses two specific problems encountered in
the personalization of structured search:

First, we propose methods to infer a user’s interest in var-
ious topics based on her interest in a limited number of facts
and entities. We regard the user profile as a snippet of the
knowledge graph and utilize the ontological facts present in
the knowledge base to propagate scores from user-accessed
entities and facts.

Second, we present a formal model for personalization
which can be easily incorporated into any probabilistic scor-
ing model. Our model is based on generative language
models and incorporates personalized entity and relation-
ship scores into the ranking. In particular, we show how
to incorporate our personalized scoring model into NAGA’s
ranking function.

Some previous work exists on the personalization of query
results on structured data. For example, [8] develops tech-
niques for personalizing results on relational databases and
Piment [1] does the same for XML queries. We differ con-
siderably from these works in both the setting (schema-
less, graph-structured data) and approach (use of ontological
facts to infer preferences). Techniques to use ontologies to
derive profiles have been described in [6, 13]. While we too
use ontological facts to derive user profiles, our methods for
doing so and our setting (graph-based knowledge base as
opposed to documents) are different.

Contributions and Outline. In a nutshell, we make the
following contributions.

• a conceptualization of user profiles as snippets of the
knowledge graph and methods to infer user interest
across this graph.

• a probabilistic personalized ranking model, and

• a preliminary experimental evaluation as a proof-of-
concept.

The remainder of the paper is organized as follows. In Sec-
tion 2 we provide some background information on NAGA,
the semantic search engine over which we have implemented
and tested our techniques. Section 3 describes our method to
generate the user profile. We then describe how to make use
of the constructed user profile in order to perform personal-
ization in Section 4. In Section 5 we present a preliminary

evaluation to assess the effectiveness of our approach. We
discuss related work in Section 6 and conclude in Section 7.

2. BACKGROUND
Our work is motivated by large graph-based knowledge

repositories such as [14]. While our techniques can be adapted
and applied to any system where the underlying knowledge-
base is a graph and the query results are graphs or trees,
in this work, we incorporate our personalization strategies
in the framework provided by NAGA [7], a new semantic
search engine. In this section we provide a brief overview of
NAGA and outline details of its ranking function.

NAGA is a semantic search engine with a large knowledge-
graph of facts. It’s query language is based on SPARQL and
the results are naturally regarded as graphs. As mentioned
in the introduction, NAGA’s scoring model scores answer
graphs based on confidence (higher confidence facts are pre-
ferred), informativeness (“popular” facts are preferred) and
compactness (“tightly connected” answers are preferred),
which are integrated into a unified framework. Its approach
is inspired by existing work on language models for informa-
tion retrieval on document collections, and is adapted and
extended to the new domain of labeled and weighted graphs.
Here we outline how the scoring model is derived and refer
the reader to [7] for additional details.

NAGA’s scoring model assumes that a query q is gener-
ated by a probabilistic model of a result graph g. A query
q is represented as q = q1q2...qk, where qi is a fact template
(that is, if a fact is represented as <x r y>, a fact tem-
plate has at least one of x, r or y unbound). Analogously,
a result graph g is represented as g = g1g2...gk, where gi is
a fact matching the fact template qi. The ranking of a re-
sult graph is based on P (g|q), which is the probability that
the result graph g generated the (observed) query q. After
applying Bayes formula and dropping a graph-independent
constant, we have: P (g|q) ∼ P (q|g)P (g) where P (g) is the
prior and is assumed to be uniform. We now estimate P (q|g)
as: P (q|g) =

∏n
i=1 P (qi|g). The likelihood of a fact template

given an answer graph is now modeled as a mixture of two
distributions, P̃ (qi|g) and P̃ (qi) as follows:

P (qi|g) =α · P̃ (qi|g) + (1− α) · P̃ (qi), 0 ≤ α ≤ 1 (1)

P̃ (qi|g) is the probability of drawing qi randomly from an an-

swer graph, P̃ (qi) is the probability of drawing qi randomly
from the total knowledge graph and α is either automati-
cally learned (via EM iterations [4]) or set to an empirically
calibrated global value. [4, 17] show the connection between
this style of probabilistic models and the popular tf · idf
heuristics.

In order to capture confidence, informativeness and com-
pactness, P̃ (qi|g) is modeled by a mixture model which puts
different weights on confidence and informativeness. This is
close in spirit to linear interpolation models used for smooth-
ing [17].

P̃ (qi|g) = β · Pconf (qi|g) + (1− β) · Pinfo(qi|g) (2)

0 ≤ β ≤ 1

For details of the estimation of each of the component
probabilities as well as the background model P̃ (qi), we re-
fer the reader to [7]. In summary, we use PNAGA to refer
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to the ranking provided by NAGA. We develop a new scor-
ing model Puser which ranks results based only on the user
preference. We then combine Puser with PNAGA to get the
personalized scoring model, Ppersonalized. In the next sec-
tion, we describe the generation of user profiles and then
develop the model for Ppersonalized in Section 4.

3. USER PROFILE
A user profile corresponding to a single user is, concep-

tually, the knowledge graph with interest scores attached to
entities and facts. Intuitively, we associate interest scores
to entities and facts which have been accessed by the user2.
However, since the number of elements which the user ac-
cesses is a very small fraction of the actual knowledge base,
we allow propagation of interest scores to the neighbors of
the accessed entities, as well as to related facts in order to
reason about the context of her interests and to incorporate
them in future queries. We discuss how these scores are
assigned and propagated in this section.

3.1 Entity Score Assignment and Propagation
We first consider the problem of assigning and propagat-

ing interest scores to entities.

Score Assignment. Initially, all entities have an interest
score of ε > 0, a very small default interest score. When the
user accesses an entity k, the interest score of that entity
Pin(k) is updated to:

Pin(k) =
#accesses(k)

Σn#accesses(n)

where the numerator is the total number of times k has
been accessed and the denominator is the total number of
entity accesses in the knowledge graph.

Score Propagation. The interest score described only ac-
counts for the entities the user already knows. A personal-
ization based only on these interest scores would limit the
user in her desire of discovering new entities, and would miss
the opportunity of generalizing more abstract user interests
from the observed user access patterns. And so, in order
to infer the user’s interest, we allow for the propagation of
scores from accessed entities.

Given that an entity k was accessed, we first determine
which other entities are candidates for score propagation. A
natural candidate is the class of the entity accessed. Con-
sider the example depicted in Figure 2. In the first itera-
tion, the entity Britney Spears is accessed. Thus, we infer
in the second iteration that the user may be interested in
other entities of the class American Pop Singer. And so, we
propagate a portion of the updated interest score for Brit-
ney Spears to the American Pop Singer. Similarly, we can
also propagate a portion of the score to other entities of the
class American Pop Singer (for example, Sheryl Crow). To
avoid cycles, each edge can be traversed at most once dur-
ing propagation. Thus there is no interest score propagated
back from American Pop Singer to Britney Spears in this
step. Further, we continue to propagate interest scores up

2We assume that we are able to determine user interest in
facts and entities when she accesses them through an appro-
priate user interface.
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Figure 2: Entity score propagation

the class hierarchy until the root node entity. And so, the in-
terest scores can flow from entity to class, from class to class
and from class to entity, but not from entity to entity. Thus
in our sample propagation, there is no flow of interest from
Britney Spears to Spears across the familyNameOf rela-
tionship. This is to prevent interest scores from topic drifts
to rather unrelated concepts. E.g., via the relationship fam-
ilyNameOf Britney Spears is connected to Heather Spears,
a Canadian artist and poet.

More formally, our entity interest propagation scheme can
be described as follows. Let k be the node whose inter-
est score was updated. Let Q be the set of its qualifying
neighbors which are eligible for score propagation (that is,
nodes reachable through the edges labeled subclassOf and
type), but to which the score has not yet been propagated.
For each i ∈ Q, we update the interest score using the for-
mula:

P ∗in(i) = Pin(i) + Pin(k)·λ
|Q|
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where the left hand side denotes the updated interest score
for entity i, 0 ≤ λ ≤ 1 is a damping factor to control the
amount of score to be propagated, and |Q| is the number
of qualifying nodes. The above formula propagates equal
damped scores to each qualifying node. The propagation
is repeated for each entity in Q until there are no more
entities left, or the propagated score mass (Pin(i) · λ) is less
than a pre-defined threshold. Finally, a normalization of
the obtained entity interest scores lets us cast P ∗in(i) into
the probability of user interest in entity i.

3.2 Fact Score Assignment and Propagation
The user may be interested in two different entities in

the knowledge graph. If these entities are connected by a
relationship, we may be tempted to infer that the user is
interested in the fact denoted by these two nodes and the
edge connecting them. However, since the user could have
independently accessed either entity in different contexts,
this inference may not be valid. And so, we assign interest
scores to facts separately.
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Figure 3: Fact score propagation

Score Assignment. Initially, all facts have an interest score
of ε > 0, a very small default score. Analogous to the case
of entities, when the user accesses a fact f , the interest score
of that fact is updated to:

Pin(f) =
#accesses(f)

Σn#accesses(n)

where the numerator is the total number of times f has
been accessed and the denominator is the total number of
fact accesses in the knowledge graph.

Score Propagation. In order to infer the user’s interests,
we need to propagate interest scores from specific facts to
other “related” facts. We need to first identify candidates
for score propagation. We have at least a couple of cases
to consider here: i) facts with the same relation as the ac-
cessed fact, ii) facts with “similar” relationship types as the
accessed facts.

For the first case, we propagate equal score to each fact
with the same relation as the accessed fact. Let f be the
edge accessed. Let F be the set of facts with the same
relationship as f . For each fact i ∈ F , we update its score
to:

P ∗in(i) = Pin(i) + Pin(f)·λ
|F |

where the left hand side denotes the updated interest score
for fact i, 0 ≤ λ ≤ 1 is a damping factor to control the
amount of score to be propagated. As with the case of en-
tities, only a damped score is added to each of the other
facts. In the example in Figure 3, interest is thus prop-
agated from the fact <Albert Einstein bornIn Ulm> to
<Hildegard Knef bornIn Ulm>.

Next, we consider relationships which are similar to the re-
lation of the accessed fact. For example, bornIn and orig-
inatesFrom are similar relationships since the entities that
can have these relationships have the same classes – person

and location. However, the same entity may belong to dif-
ferent classes. And so, in order to more precisely quantify
the similarity, we utilize a similarity metric. Let <x r y>
denote a fact. Let left denote the set of classes to which
x belongs and let right denote the set of classes to which
y belongs. Note that all entities belong to the class entity.
Let i and j be two sets of facts corresponding to relations
Ri and Rj respectively. The similarity between Ri and Rj
is computed as follows:

similarityij =

(
|lefti ∩ leftj |

max(|lefti|, |leftj |)
+

|righti ∩ rightj |
max(|righti|, |rightj |)

)/2

Let f be the edge accessed and R be the set of relation-
ships in the knowledge graph which are different from the
relation of f . For each i ∈ R, we first compute the similar-
ity score S(i) using the formula above. Let Fi be the set of
facts with relationship i. For each fact fi ∈ Fi, we update
the interest score as follows:

P ∗in(fi) = Pin(fi) + Pin(f)·λ
|Fi|

· S(i)

where λ is the damping factor. Note that the similarity
S(i) acts as a weighting factor to give higher weight to facts
with highly similar relations as compared to facts with less
similar relations. In our example in Figure 3, this means
that interest is propagated from <Albert Einstein bornIn
Ulm> to the fact <Britney Spears originatesFrom Kent-
wood Louisiana> as follows. Each of the entities involved
in the two facts belong to the following classes.

Albert Einstein ∈
Physicists, Ger-
man Americans, Pacifists,
person

Britney Spears ∈ Singers, English Americans,
Actors, person

Ulm ∈ Cities in Baden Württemberg,
city, municipality, location

Kentwood Louisiana ∈ Towns in Louisiana, town,
municipality, location

Then the similarity between the two facts amounts to
(0.25 + 0.5)/2 = 0.375. And so, a score of 0.375 is prop-
agated from the first fact with Einstein to the second fact
with Spears. Again, a final normalization step allows us to
treat interest scores P ∗in(f) as the probability of user interest
in the fact f.
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4. PERSONALIZATION STRATEGY
We cast our personalized ranking approach in a proba-

bilistic model. To allow for a tuning of the strength of the
employed personalization at any time, we define our person-
alized ranking function as a mixture of the original ranking
function PNAGA(g|q) of NAGA and the user-biased ranking
function Puser(g|q) as follows:

Ppersonalized(g|q) = γ.PNAGA(g|q) + (1− γ).Puser(g|q)

Thus by choosing γ appropriately, the influence of the
user-specific ranking bias can be regulated.

In the following, we derive our proposal for estimating the
user-specific probability that the answer graph g is relevant
to the query q. Our derivation of a personalized ranking
function follows similar lines as the derivation of the orig-
inal NAGA ranking, thus transferring the reasoning from
the complete knowledge graph to the user-specific graph
snippet. We also adopt the notion of a background model
weighting the fact templates comprising the query against
each other, as well as, informativeness which measures the
popularity of facts matching the query. While informative-
ness based on the complete knowledge graph would, e.g.,
give high weight to the entity ”Britney Spears”, informative-
ness on the personal knowledge graph snippet might deem
”Hildegard Knef” more popular, and thus more interesting
to the user.

More formally, the user-specific ranking function Puser(g|q)
can be re-written as Puser(g|q) ≈ Puser(q|g) ·Puser(g) using
Bayes’ rule. The denominator Puser(q) can be dropped as it
is the same for all answer graphs and thus has no influence
on the ranking order. With Puser(g) assumed to be uniform,
we are left with Puser(q|g), the probability that the answer
graph g generated the query q given the user profile.

Recall that a query is expressed as q = q1q2...qk where
qi is a fact template. A fact template is of the form <x r
y> where at least one of x, r or y is unbound. Assuming
independence between fact templates, we have

Puser(q|g) =

n∏
i=1

Puser(qi|g)

Again we apply Bayes’ rule to obtain Puser(qi|g) ≈ Puser(g|qi)·
Puser(qi). Puser(g|qi) is the probability that the answer
graph g matches the fact template qi. Puser(g|qi) assesses
the informativeness of the answer graph given the query tem-
plate and user profile, while Puser(qi) serves the purpose of
a user-specific background model.

4.1 Definition of the user-specific background
model

The background model weights the different fact tem-
plates in the query (this is similar in spirit to term weighting
in standard IR). In order to weight the fact templates, we
need to reason on the bound parts of each fact template qi,
and weight different query units against each other depend-
ing on the user interest. That is

Puser(qi) =

P ∗in(x) if only x is bound in qi
P ∗in(y) if only y is bound in qi
P ∗in(x) · P ∗in(y) if x, y are bound in qi∑
f ′=(s,R,t) P

∗
in(f ′) if only R is bound in qi

P ∗in(x) ·
∑
f ′=(s,R,t) P

∗
in(f ′) if x, R are bound in qi

P ∗in(y) ·
∑
f ′=(s,R,t) P

∗
in(f ′) if R, y are bound in qi

Clearly, when only one of the entities is bound, the user
interest boils down to her interest in that particular entity.
Our score propagation scheme ensures that both direct as
well as indirect interest in the entity play a role in the final
interest score. However, when both entities are bound, we
have choice of either multiplying or adding the user interest
in those entities. We chose multiplication based on the intu-
ition that interest in two entities may have been expressed
independently of each other.

The last three cases deal with fact templates when the
relation is bound. When only the relation is bound, the
user interest in that relation is the sum of interest in all facts
containing that relation. Note that if the user has previously
expressed interest in very few facts containing this relation,
our propagation takes care that other facts with the same
relation receive only a damped score. As in the previous
case, if an entity as well as a relation are both bound, we
then assume independence in the user interest in each of
them and multiply the interest scores.

4.2 Definition of the user-specific informative-
ness

Next we estimate the user-specific informativeness Puser(g|qi)
which serves a similar purpose as informativeness in the
original NAGA ranking. Instead of assessing the overall
popularity of facts, it measures popularity with respect to
the user-specific snippet of the knowledge graph. Since the
bound arguments of a query q, comprising of fact templates,
are the same for each answer graph g, the user-specific in-
formativeness Puser(g|qi), estimates the user interest in the
unbound parts of the query. Since each qi has a match f ,
Puser(g|qi) reduces to Puser(f |qi).

The probability of a fact f = <x′ R′ y′> matching qi =
<x R y> in the context of the user profile, Puser(f |qi), is
defined as the probability of user interest in the unbound
parts of the fact f , given that we just learnt from the user
formulating the query q that she is interested in the bound
parts of f .

We estimate this probability by reasoning on the interest
in the unbound parts of f , i.e.,

Puser(f |qi) =

P ∗in(x′) if x unbound in qi
P ∗in(y′) if y unbound in qi
P ∗in(x′) · P ∗in(y′) if x, y unbound in qi∑
f ′=(s,R′,t) P

∗
in(f ′) if R unbound in qi

P ∗in(x′) ·
∑
f ′=(s,R′,t) P

∗
in(f ′) if x, R unbound in qi∑

f ′=(s,R′,t) P
∗
in(f ′) · P ∗in(y′) if R, y unbound in qi

P ∗in(x′) ·
∑
f ′=(s,R′,t) P

∗
in(f ′) · P ∗in(y′) else

Here we assume independence, and thus consider the prod-
ucts of user interests in the unbound parts of f . The general
user interest into the relation R is obtained by aggregating
the user interest in facts containing a relation R.
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Example. Suppose a user accesses the fact<Britney Spears
isa singer>. Some time later, she poses the query q = <$x
bornIn Ulm> ∧ <$x isa $y> i.e., a query consisting of two
templates q1 = <$x bornIn Ulm> and q2 = <$x isa $y>.
Then the user-specific background model, Puser(qi) weights
the two templates q1 and q2 against each other based on the
probability of user interest in the bound query parts, i.e.,
the user interest in bornIn Ulm with respect to isa. For
each template the facts matching the template are ranked
based on their unbound parts. E.g., let the two candi-
date answers be g1 = <Albert Einstein bornIn Ulm> ∧
<Albert Einstein isa physicist> and g2 = <Hildegard Knef
bornIn Ulm> ∧ <Hildegard Knef isa singer> Now, g1 and
g2 are ranked based on Puser(Albert Einstein|q1) and Puser(Albert
Einstein, physicist|q2), respectively Puser(Hildegard Knef|q1)

and Puser(Hildegard Knef,singer|q2). In the original NAGA
ranking, we would expect the informativeness of Albert Einstein
and physicist to be higher than the informativeness of Hilde-
gard Knef and singer due to the popularity of Albert Ein-
stein. In the context of the user profile which documented a
user interest in singers, we would, however, expect Hildegard
Knef to have the higher user-specific informativeness.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup
We use the NAGA semantic search engine to test our score

propagation and personalization techniques. At the time of
this evaluation, we did not have access to user logs3. Instead,
we created our own queries and profiles to specifically test
the various components of our techniques.

Profile Topic
Query used to build
profile

1. OpenGL What is OpenGL?

2. Java (the PL) All facts about Java

3. Kevin Mitnick All facts about Kevin Mit-
nick

4. Britney Spears
All facts about Britney
Spears

5. Friedrich Nietzsche All books written by Niet-
zsche

6. Yao Ming All facts about Yao Ming

7. Pirates of the
Caribbean

All actors of the Pirates of
the Caribbean movie

8. Levenshtein distance All facts about Levenshtein
distance

9. Steven Seagal Movies in which Seagal acted

10. Picasso All of Picasso’s creations

Table 1: User profiles generated from topics

Creation of user profiles. In order to create user profiles,
we chose topics from the INEX 2007 Adhoc Track4. The
track makes use of a subset of Wikipedia and around 450
topics are proposed. Each topic is usually based on an entity.
We chose 10 of those topics which were also available in
NAGA’s knowledge base as the basis for generating user
profiles. Table 1 lists these topics. For each topic, the query

3Note that the collection of user logs is work in progress.
4inex.is.informatik.uni-duisburg.de/2007/

listed in the third column was fired and the top-10 results
were taken as interesting to the user. The entities as well
as facts corresponding to each of the results were deemed
to be clicked by the user. These clicks were then translated
into scores and propagated to other parts of the knowledge
base. For example, for profile number 5, the query fired
was: <Friedrich Nietzche wrote $x>. The top-10 results
included entity bindings for $x (for example, “The birth
of tragedy”). Each of these entities were assumed to be
clicked. In addition, the fact corresponding to the result
(“Friedrich Nietzsche wrote The birth of tragedy”) was also
assumed to be clicked.

Profile Topic Example Query Expected Results

Re-finding Queries

1. OpenGL
$x is Graph-
ics library

OpenGL on top

2.
Java (the
PL)

$x $r Sun
Microsystems

Java on top

3. Kevin Mit-
nick

$x type
Computer
Security
Specialist

Mitnick’s name on
top

4.
Britney
Spears

$x isa
American
dance
musician

Britney Spears on
top

Queries testing entity interest propagation

5. Friedrich
Nietzsche

$x isa book
Nietzsche’s books,
books on philosophy

$x subClas-
sOf book

The class of Niet-
zsche’s books, the
category philosophi-
cal books on top

6. Yao Ming
$x subClas-
sOf Player

The classes Hous-
ton Rockets play-
ers, basketball play-
ers on top

7.
Pirates
of the
Caribbean

$x subClas-
sOf movie

The classes Pirate
films, action films on
top

8. Levenshtein
distance

$x sub-
ClassOf
algorithm

String algorithms on
top

Queries testing fact interest propagation

9.
Steven Sea-
gal

$x subClas-
sOf movie

Action thrillers,
American movies

Woody Allen
$r $x

movies in which
Allen was an actor

10. Picasso
Vincent
van Gogh

$r $x

van Gogh’s paint-
ings

Table 2: Queries generated to test personalization

Queries. Once each of the above profiles was set up, we for-
mulated queries to test our techniques. Table 2 lists some
examples of queries we constructed and the results we ex-
pected to see. The queries were designed to specifically
test the effects of the individual components of the user-
specific informativeness. The first set of queries in Table 2
makes a case for remembering previous accesses to entities.
For example, query 2 makes use of the clicks on the entity
Java PL (programming language) when the user searches
for interesting facts about Sun Microsystems. The next set
of queries we considered was conceived to test our entity
score propagation. For example, on profile 5 the goal was to
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test the entity score propagations from Nietzsche’s books to
other books (e.g., The birth of tragedy → category philos-
ophy books → other instances of philosophy books), as well
as, from Nietzsche himself to other philosophers. Finally, we
constructed queries to witness the effects of our fact score
propagation scheme. Consider for example query 10. Since
the profile was generated based on Picasso’s creations as an
artist, we expect the listing of van Gogh’s paintings to be
ranked high, rather than his personal details (such as, birth
date, birth place, etc.). Similarly, profile 9 is concerned with
the movies in which Seagal acted in and so, for query 9, we
would expect a list of movies in which Woody Allen acted in,
as opposed to his personal details or movies that he directed.

5.2 Results

Rank NAGA Personalization
1. I, Robot The Antichrist
2. I, Libertine The Birth of Tragedy
3. I, Claudius On the Genealogy of Morality
4. Little, Big The Gay Science
5. Contact Ecce Homo
6. V. Nietzsche contra Wagner
7. Night Twilight of the Idols
8. Magic, Inc In a Glass Darkly
9. Sex The Book on Adler
10. Girl, Interrupted The Autobiography of

Charles Darwin

Table 3: Results for the query <$x isa book> based
on the profile generated by <Friedrich Nietzsche
wrote $x>

On our test queries, our personalization approach coin-
cides with our expectations. In the following we discuss a
couple of the more interesting examples testing our propa-
gation scheme in more detail. We first consider the queries
on profile 5. Table 3 shows the results and ranking re-
turned by both NAGA as well as our personalization5 for
the first query <$x isa book>. As expected, the books by
Nietzsche ranked very high – in fact, the first 7 results are
books by Nietzsche. In addition, we also have a book written
by Kierkegaard, another well-known philosopher, at rank 9
(The Book on Adler) showing that propagation and person-
alization are boosting the right results to the top. How the
books reported at position 8 (In a Glass Darkly by Sheridan
Le Fanu) and position 10 (The Autobiography of Charles
Darwin by Charles Darwin) connect to Nietzsche is not as
obvious since neither of them is a philosophical book nor
written by a philosopher. A closer look at the propagation
revealed that Nietzsche’s book “The Birth of Tragedy” was
written in 1872, the same year that the above two books
were written. Since “The Birth of Tragedy” also belongs to
the category “1872 books”, the score was propagated to the
other two books as well. Thus, our propagation inferred an
interest in books written in the times of Nietzsche.

Similarly, our second query on this profile exhibits effects
of our entity score propagation. Suppose a user had shown
interest in Nietzsche’s work and was now interested in brows-
ing other books in the knowledge base, he could issue the
query <$x subclassOf book>. The results for this query
are reported in Table 4. Consider the personalized results.

5Note that the result ranking presented here are based only
on the personalized ranking. We did not mix the original
NAGA score and the personalized score since our goal was
to test only the personalization techniques.

Rank NAGA Personalization
1. formulary Books by Nietzsche
2. curiosa Philosophy books
3. authority 1895 books
4. booklet 1889 books
5. tome 1908 books
6. storybook 1887 books
7. pop-up book 1882 books
8. bestiary 1872 books
9. catechism Books by Kierkegaard
10. trade book Travel books

Table 4: Results for the query <$x subclassOf
book>

Clearly, the top 9 results are a direct result of personaliza-
tion. Results at rank 3 through 8 are the years in which
Nietzsche’s works were published. The result at rank 10
was a “random” result – that is, there were no other results
which could be preferred since all other results had the same
score.

Rank NAGA Personalization

1. type artist created ”The Potato
Easters”

2. type person created Sunflowers

3. type Dutch painter
created ”The Starry
Night”

4. isCalled * created Irises

5.
is Called Vinsent van
Qoq

created ”Portrait of
Dr. Gachet”

6. isCalled * type artist
7. isCalled * type person

8. isCalled * type Dutch painter

9. isCalled * isCalled *

10. isCalled *
is Called Vinsent van
Qoq

Table 5: Results for the query “Vincent van Gogh
$r $x”

Next, we discuss an example pointing out the merits of
fact score propagation. Suppose a user showed interest in
the works of Picasso (profile 10), and is now searching facts
about Vincent van Gogh (<Vincent van Gogh $r $x>). With-
out personalization we find answers such as Vincent van
Gogh is an artist on top followed by the synonyms under
which he was known in various languages. In contrast, the
personalized results present a number of his paintings on top
(see Table 5 for the result rankings). This is due to the inter-
est propagation from <Picasso created Chicago Picasso>
to, e.g., <Vincent van Gogh created Sunflowers> via the
relation created.

In summary, we have shown in this section that not only
is personalization highly essential (comparing the ranked re-
sult list of NAGA with the personalized list), but also that
our techniques are the right way to proceed. We tested our
techniques with both simple as well as complex queries. We
have reported on a subset of the most interesting queries
here.

6. RELATED WORK
Our present work on personalizing the search for knowl-

edge finds related work on personalization in various fields:
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in Web search, XML search, as well as in databases. How-
ever, to the best of our knowledge we are the first to endeavor
to personalize search in a knowledge base. This bears com-
monalities with personalization in databases as both lack
elaborate textual information. At the same time, the knowl-
edge base we consider is schema-free as opposed to databases
and XML where a successful personalization system always
needs to be adapted to the schema at hand.

In [8], Koutrika et al. present a personalization frame-
work for database users that relies on user profiles which
comprise user preferences with respect to atomic query el-
ements such as individual join conditions or selections. At
query-time, the preferences most relevant to the query and
user are selected from the profile, and integrated to form a
new modified database query. This query-rewriting process
is inherently hard as, e.g., conflicting constraints need to be
handled. Koutrika et al. provide means for handling syn-
tactical conflicts, however, semantical conflicts are schema-
dependent and thus not generally addressable.

In [2], the XML personalization system, PIMENTO is pre-
sented. In their approach, a user profile is a set of rules of
the form (condition, action, conclusion). The condition and
conclusion parts are XQuery full text, and the action can be
add, remove or replace. Whenever a query matches a rule
condition, it is re-written accordingly. However, the genera-
tion of the rules in the user profile requires the user’s active
participation. Pan describes an interesting approach in [10]
where he proposes query expansion for XML search based
on ontological similarities. After initial feedback from the
user a query specific ontology is constructed from parts of
the global ontology and the query itself, and then used for
expansion. In [11, 12] Schenkel and Theobald present a way
for structural query expansion based on relevance feedback
for XML. [5] is an approach along similar lines based on
pseudo feedback and only a portion of the document. XML
structure is also considered by Wang et al. in [16]. They
propose an extension of Preference XPath for the purposes
of personalized MPEG-7 digital libraries.

Jiang et al. [6] introduce a personalization approach for se-
mantic search. Their methodology is similar to ours in that
they employ a domain ontology, and reason on user interest
in concepts and relations. They consider long-term interest
scores based on previous accesses, and perform spreading
activation on the concepts present in the initial query result
set. By combining scores from the spreading activation with
the long-term interest weights, results ”close” to the result
set that have been accessed before will be ranked highest.
By performing spreading activation on the result set instead
of the user profile, this approach, however, does not allow to
infer interest in concepts related to the ones accessed by the
user. Similarly, Sieg et al. [13] present an approach to per-
sonalized search that involves building models of user con-
text as ontological profiles by assigning implicitly derived
interest scores to existing concepts in a domain ontology.
Still both approaches do not tackle the problem of person-
alization the search on a knowledge graph but consider per-
sonalizing document search.

Another differing, still related area is ontological user pro-
filing in recommender systems. For example, Middleton et
al. [9] present two experimental systems, Quickstep and Fox-
trott, for recommending academic research papers.

7. CONCLUSIONS AND FUTURE WORK

In this paper we presented a personalization approach tai-
lored to the specifics of searching a knowledge base. We
developed techniques to infer user interests to create a user
profile and then showed how user interest could be incor-
porated in our model for personalization. Our preliminary
experiments examined both entity and fact score propaga-
tion and showed promising results.

In ongoing experiments, we are studying how mixing user
interest with the original NAGA score affects results. We
are also studying how the user-specific background model
affects results.
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ABSTRACT
In publish/subscribe systems, subscribers express their in-
terests in specific events and get notified about all pub-
lished events that match their interests. As the amount
of information generated increases rapidly, to control the
amount of data delivered to users, we propose enhancing
publish/subscribe systems with a ranking mechanism, so
that only the top-ranked matching events are delivered. Ran-
king is based on letting users express their preferences on
events by ordering the associated subscriptions. To avoid
the blocking of new notifications by top-ranked old ones,
we associate with each notification an expiration time. We
have fully implemented our approach in SIENA, a popular
publish/subscribe middleware system.

1. INTRODUCTION
The publish/subscribe paradigm provides loosely coupled

interaction among a large number of users of a large-scale
distributed system. Users can express their interest in an
event via a subscription and inject this subscription into the
system. The system will then notify them whenever some
other user generates (or publishes) an event that matches
a previously made subscription. Users that generate such
events are called publishers, while users that consume the
published events are called subscribers. All published events
that are relevant to at least one of a specific user’s subscrip-
tion will eventually be delivered to this user.

Typically, in publish/subscribe systems, all subscriptions
are considered equally important. However, due to the abun-
dance of information, users may receive overwhelming a-
mounts of event notifications. In such cases, users would pre-
fer to receive only a fraction of this information, namely the
most interesting to them. For example, assume a user, say
John, who is generally interested in drama movies. Specifi-
cally, John is more interested in drama movies directed by
Tim Burton than drama movies directed by Steven Spiel-
berg. Ideally, John would like to receive notifications about
Steven Spielberg drama movies only in case there are no, or

not enough, notifications about Tim Burton drama movies.
In this paper, we advocate using some form of ranking

among subscriptions, so that users can express the fact that
some events are more important to them than others. To
rank subscriptions, we use preferences. A variety of prefer-
ence models have been proposed, most of which follow either
a quantitative or a qualitative approach. In the quantitative
approach (e.g. [5, 13]), users employ scoring functions that
associate a numeric score with specific data to indicate their
interest in it. In the qualitative approach (e.g. [8, 12, 11]),
preferences between two data items are specified directly,
typically using binary preference relations. To express pri-
orities among subscriptions, we first introduce preferential
subscriptions, that is, subscriptions enhanced with inter-
est scores following the quantitative preference paradigm.
Based on the subscription scores, we propagate to users only
the notifications that are the most interesting to them. We
extend this idea to encompass qualitative preferences.

Based on preferential subscriptions, we introduce a top-k
variation of the publish/subscribe paradigm in which users
receive only the k most interesting events as opposed to all
events matching their subscriptions. Since the delivery of
notifications is continuous, we introduce a timing dimension
to the top-k problem, since without some notion of freshness,
receiving top-ranked notifications would block for ever the
delivery of any new, less interesting notifications. To this
end, we associate an expiration time with each notification,
so that, notifications for old events will eventually die away
and let new ones be delivered to the users.

To locate the subscriptions that match a specific event
notification efficiently, we adopt a graph-based representa-
tion of subscriptions, called preferential subscription graph.
Subscriptions correspond to nodes in the graph and edges
point from more general to more specific subscriptions.

Our prototype implementation, PrefSIENA [3], extends
SIENA [6], a popular publish/subscribe middleware system,
by including preferential subscriptions and top-k notification
delivery. We report some preliminary experimental results
that compare the number of notifications delivered by Pref-
SIENA with respect to the corresponding number in the case
of the original SIENA system.

The rest of this paper is structured as follows. In Sec-
tion 2, we introduce preferential subscriptions, that is, sub-
scriptions augmented with interest scores. We also propose
time-valid notifications by associating expiration times with
notifications. In Section 3, we focus on how to compute the
top-k notifications based on preferential subscriptions and
time-valid notifications, while in Section 4, we extend pref-
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nodes responsible for
storing subscriptions and
matching events to them.

publisher

publisher

publisher

subscriber

subscriber

subscriber

publish()

publish()

publish()

subscribe()

unsubscribe()

notify()

subscribe()

subscribe()

notify()

event-notification service

Figure 1: Basic publish/subscribe system.

erential subscriptions to encompass qualitative preferences.
In Section 5, we present our evaluation results. Section 6
describes related work and finally, Section 7 concludes the
paper with a summary of our contributions.

2. PREFERENTIAL MODEL
In this section, we first describe a typical form of noti-

fications and subscriptions used in publish/subscribe sys-
tems. Then, we introduce an extended version of subscrip-
tions that include the notion of preferences. Also, we extend
the definition of notifications to include the notion of time
validity.

2.1 Publish/Subscribe Preliminaries
A publish/subscribe system is an event-notification ser-

vice designed to be used over large-scale networks, such as
the Internet. Generators of events, called publishers, can
publish event notifications to the service and consumers of
such events, called subscribers, can subscribe to the service
to receive a portion of the published notifications. Publish-
ers can publish notifications at any time. The notifications
will be delivered to all interested subscribers at some point
in the future.
Architecture: In general, a publish/subscribe system [9]
consists of three parts: (i) the publishers that provide events
to the system, (ii) the subscribers that consume these events
and (iii) an event-notification service that stores the vari-
ous subscriptions, matches the incoming event notifications
against them and delivers the notifications to the appropri-
ate subscribers. As shown in Figure 1, the event-notification
service provides a number of primitive operations to the
users. The publish() operation is called by a publisher
whenever it wishes to generate a new event. The sub-
scribe() operation is called by a subscriber whenever it
wishes to express a new interest. An unsubscribe() opera-
tion is usually also provided to cancel previous subscriptions.
The event-notification service can use the notify() opera-
tion whenever it wants to deliver a notification to a sub-
scriber. An event-notification service can be implemented
using a centralized or a distributed architecture, that is, we
may have one or a set of servers responsible for the process
of matching notifications to subscriptions.
Notifications: We use a generic way to form notifications,
similar to the one used in [6, 10]. In particular, notifications
are sets of typed attributes. Each notification consists of an
arbitrary number of attributes and each attribute has a type,
a name and a value. Attribute types belong to a predefined
set of primitive types, such as “integer” or “string”. At-
tribute names are character strings that take values accord-

string title = LOTR: The Return of the King

string director = P. Jackson
time release date = 1 Dec 2003

string genre = fantasy

integer oscars = 11

Figure 2: Notification example.

string director = P. Jackson

time release date > 1 Jan 2003

Figure 3: Subscription example.

ing to their type. An example notification about a movie is
shown in Figure 2.

Definition 1 (Notification). A notification n is a
set of typed attributes {a1, . . . , ap}, where each ai, 1 ≤ i ≤ p,
is of the form (ai.type ai.name = ai.value).

Subscriptions: Subscriptions are used to specify the kind
of notifications users are interested in. Each subscription
consists of a set of constraints on the values of specific at-
tributes. Each attribute constraint has a type, a name,
a binary operator and a value. Types, names and values
have the same form as in notifications. Binary operators
may include common operators such as =, 6=, <, >, ≤, ≥,
substring, prefix and suffix. An example subscription is
depicted in Figure 3.

Definition 2 (Subscription). A subscription s is a
set of attribute constraints {b1, . . . , bq}, where each bi, 1 ≤
i ≤ q, is of the form (bi.type bi.name θbi

bi.value), θbi
∈ {=,

<, >,≤,≥, 6=, substring, prefix, suffix}.

Matching notifications to subscriptions: Intuitively,
we can say that a notification n matches a subscription s,
or alternatively a subscription s covers a notification n, if
and only if every attribute constraint of s is satisfied by some
attribute of n. Formally:

Definition 3 (Cover Relation). Given a notificati-
on n of the form {a1, . . . , ap} and a subscription s of the
form {b1, . . . , bq}, s covers n if and only if ∀ bi ∈ s, ∃ aj ∈ n

such that bi.type = aj .type, bi.name = aj .name and it holds
((aj .value) θbi

(bi.value)), 1 ≤ i ≤ p, 1 ≤ j ≤ q.

A notification n is delivered to a user if and only if the user
has submitted at least one subscription s, such that s covers
n. For example, the subscription of Figure 3 covers the no-
tification of Figure 2 and therefore, this notification will be
delivered to all users who have submitted this subscription.

2.2 Preferential Subscriptions
In this paper, we extent the publish/subscribe paradigm

to incorporate ranking capabilities. Assuming that each user
has defined a set of preferences, then this user should receive
a newly published notification, if and only if, the notifica-
tion describes an event that is more preferable to the user
than any previously received event. To express preferences
along with subscriptions, we can follow either the quanti-
tative or the qualitative approach. For simplicity reasons,
we first consider the quantitative preference model, while in
Section 4, we apply qualitative preferences.

A preferential subscription is a subscription enhanced with
a numeric score. The higher the score, the more interested
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string director = P. Jackson
0.7

date release date > 1 Jan 2003

Figure 4: Preferential subscription example.

the user is in notifications covered by this specific subscrip-
tion. These scores can have any real value. We assume here
that they take values within the range [0, 1]. An example of
a preferential subscription is shown in Figure 4.

Definition 4 (Preferential Subscription). A pref-
erential subscription psX

i , submitted by user X, is of the
form psX

i = (si, score
X
i ), where si is a subscription and

scoreX
i is a real number within the range [0, 1].

Assuming that a user X defines a set of preferential sub-
scriptions P X , we use the user’s preferential subscriptions
to rank the published notifications and deliver to the user
only the top-k notifications, i.e. the k highest ranked ones
(where k is a user-defined parameter). We define the score
of a notification to be the largest among the scores of the
subscriptions that cover it:

Definition 5 (Notification Score). Assume a no-
tification n, a user X and the set P X of the user’s preferen-
tial subscriptions. Assume further the set P X

n = {(s1, score
X
1 ),

. . . , (sm, scoreX
m)}, P X

n ⊆ P X , for which si covers n, 1 ≤
i ≤ m. The notification score of n for X is equal to sc(n, X)
= max {scoreX

1 , . . . , scoreX
m}.

A newly published notification n is delivered to a user X,
if and only if, it is covered by some subscription s previously
issued by X and X has not already received k notifications
more preferable to n. A notification n1 is more preferable
for user X to a notification n2, if and only if, it has a higher
notification score for X than n2.

In general, we assume that scores are indicators of positive
interest, thus, we use the maximum value of the correspond-
ing subscriptions. One could argue for other ways of aggre-
gating the scores, for instance using the mean, minimum or
a weighted sum. Yet, an alternative way would be to use
only the scores of a subset of P X

n , namely the most specific
subscriptions. A similar notion for preferences is introduced
in [15]. For example, assume the notification of Figure 2 and
the preferential subscriptions ({genre = fantasy}, 0.7) and
({genre = fantasy, director = P. Jackson}, 0.6) (for ease
of presentation we omit the type of each attribute). The
second subscription is more specific than the first one, in
the sense that in the second subscription the user poses an
additional, more specific requirement to movies than in the
first one, and so, the score of the first one should be ignored.
Formally, a subscription s ∈ P X

n is a most specific one if no
other subscription in P X

n covers it (see Definition 7).
We leave as future work a user study to evaluate the ap-

propriateness of the different methods for assigning scores.
In general, all such methods may increase the complexity of
the process of matching notifications to subscriptions, since
in traditional publish/subscribe, for matching to be com-
pleted successfully, it suffices to find just one subscription
that covers the notification, whereas for computing the no-
tification score, we may need to locate all covering subscrip-
tions.

2.3 Time-Valid Notifications
In a publish/subscribe system, where new event notifica-

tions are constantly produced, the following problem may

genre = comedy 0.9

genre = drama 0.8

n  (20:00)1

title = The Godfather
genre = drama

= 21:10showing time

title = Fight Club
genre = drama

= 23:00showing time

title = Casablanca
genre = drama

= 23:10showing time

title = Vertigo
genre = drama

= 23:20showing time

n2 (20:10)

n3 (20:15)

n4 (22:00)

n5 (22:10)

n6 (22:20)

title = The Apartment
genre = comedy

showing time = 21:00

title = Ratatouille
genre = comedy

= 21:15showing time

n2

title = The Godfather
genre = drama

= 21:10showing time

title = The Apartment
genre = comedy

= 21:00showing time

n1

title = Ratatouille
genre = comedy

= 21:15showing time

n3

Figure 5: Top-2 notifications for a single user at 22:30 (no
expiration time used).

arise: it is possible for very old but highly preferable no-
tifications to prevent newer notifications from reaching the
user. Specifically, after receiving k very highly preferable
notifications, the user will receive no new ones unless they
are ranked higher, something that may not be desirable.

For instance, consider the example of Figure 5. For sim-
plicity, we assume a single user, say John, who has defined
the following preferential subscriptions for movies: John
has assigned score 0.9 to comedies and score 0.8 to dra-
mas. Assume that a movie theater generates the notifica-
tions n1, n2, . . . , n6 of Figure 5 in that order and that John
is interested in the top-2 results. n1 will be delivered to
John, since it is the first notification that is covered by his
subscriptions. n2 will also be delivered, since it is the second
best result seen up to this moment. n3 is equally preferred
to n1 and will therefore also be delivered to John (replac-
ing n2 in the current top-2 results). Since n4, n5 and n6

are less preferable to the current top-2 results, none of them
will be delivered to John. Assuming that notifications are
published one hour prior to the showing time, if John checks
his top-2 results at 22:30 he will only find movies that he
can no longer watch (the top-2 results at 22:30 are marked
with gray color), even though other interesting movies that
start at 23:00 have been published.

To overcome this problem, we need to define the subset
of notifications over which the top-k notifications for each
user will be located. One solution would be to split time in
periods of duration T and at each time instance, deliver a
notification to the user, if the user has not already received,
during the current period, k notifications with higher scores.
However, since top-k computation starts anew in the be-
ginning of each period, the rank of events received by the
user may end up being rather arbitrary. For example, high-
ranked notifications appearing in periods with many other
high-ranked ones may not be delivered to the user, whereas
low-ranked publications appearing in periods with a small
number of high-ranked ones may be delivered.

A more general approach is to associate each published
notification n with an expiration time n.exp. The notifica-
tion is considered valid only while n.exp has not expired.
The top-k results for each user are defined over the subset
of valid notifications. This way, older notifications which
have expired do not prevent valid ones from reaching the
user even if they are more preferable than those. Consid-
ering the previous example, assume that each notification
expires at the showing time of the corresponding movie (see
Figure 6). n1, n2 and n3 will be delivered to the user as
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genre = comedy 0.9

genre = drama 0.8

n  (20:00)1

title = The Godfather
genre = drama

= 21:10showing time

title = Fight Club
genre = drama

= 23:00showing time

title = Casablanca
genre = drama

= 23:10showing time

title = Vertigo
genre = drama

= 23:20showing time

n (20:10)2

n (20:15)3

n (22:00)4

n (22:10)5

n (22:20)6

title = The Apartment
genre = comedy

showing time = 21:00

title = Ratatouille
genre = comedy

= 21:15showing time

n1

title = The Godfather
genre = drama

= 21:10showing time

title = Fight Club
genre = drama

= 23:00showing time

title = Casablanca
genre = drama

= 23:10showing time

title = Vertigo
genre = drama

= 23:20showing time

n2

n3

n4

n5

n6

title = The Apartment
genre = comedy

= 21:00showing time

title = Ratatouille
genre = comedy

= 21:15showing time

Figure 6: Top-2 notifications for a single user at 22:30 (with
expiration time used).

before. By the time n4 is published (22:00), n1, n2 and
n3 have expired and therefore, n4 will also be delivered to
the user. n5 and n6 will be delivered as well, since they
are equally preferred as the notifications in the top-2 at the
time of their publication. Notice that the periodic approach
is a special case of the expiration-time one. By setting the
expiration time of each notification equal to the ending time
of the current period, we achieve the same result as with the
periodic approach.

Based on the assumption that published notifications are
valid only for a specific time period, next we define which
ones belong to the top-k notifications for a user.

Definition 6 (Top-k Notifications). Assume a user
X and P X the set of X’s preferential subscriptions. A notifi-
cation n published at time t belongs to the top-k notifications
of X, if and only if, n is covered by at least one subscrip-
tion s appearing in a preferential subscription ps ∈ P X and
X has not already received k notifications n1, . . . , nk with
ni.exp > t and sc(i, X) > sc(n, X), 1 ≤ i ≤ k.

An alternative way to set the expiration time for a noti-
fication would be to let the user define a refresh time along
with each subscription. This can be also expressed through
defining appropriate values of the expiration time for notifi-
cations as follows. Assuming that a notification n is covered
by a user subscription s associated with a refresh time r,
then the expiration time of n could be set to t + r, where
t is the time that n is sent to the user. Note that in this
approach, a specific notification does not have a single expi-
ration time but instead, it is associated with a different one
for each user.

3. RANKING IN PUBLISH/SUBSCRIBE
In this section, we introduce a preferential subscription

graph for organizing our preferential subscriptions. We also
present an algorithm for computing the top-k results and
discuss the server topology.

3.1 Preferential Subscription Graph
To reduce the complexity of the matching process between

notifications and subscriptions, it is useful to organize the
subscriptions using a graph. We use preferential subscrip-
tions to construct a directed acyclic graph, called prefer-
ential subscription graph, or PSG. To form such graphs,
we use the cover relation between subscriptions defined as
follows.

cinema = ster

(John, 0.5)

genre = drama
time > 21:00

(John, 0.7)

cinema = ster
genre = drama
time > 21:00

(John, 0.9)
(Anna, 0.6)

Figure 7: Preferential subscription graph example.

Definition 7 (Cover between Subscriptions). Gi-
ven two subscriptions si and sj, si covers sj , if and only if,
for each notification n such that sj covers n, it holds that si

covers n.

For example, the subscription {genre = fantasy, director

= P. Jackson} covers the subscription {genre = fantasy}.
In a preferential subscription graph, nodes correspond to

subscriptions and edges to cover relations between subscrip-
tions. Assume the set P of all preferential subscriptions, i.e.
the preferential subscriptions defined by all users. For each
subscription si ∈ SP , where SP is the set of all subscrip-
tions in P , we maintain a set of pairs, called score set, of the
form (j, score

j
i ), where j is a user and score

j
i is the numeric

score that j has assigned to si. A subscription si is associ-
ated with the pair (j, score

j
i ), if and only if, a preferential

subscription ps
j
i = (si, score

j
i ) exists in P . Next, we define

formally the score set of a subscription.

Definition 8 (Score Set). Assume a set of users U ,
a set of preferential subscriptions P , and SP the set of all
subscriptions in P . For each si ∈ SP , the score set is the
set Wi = {(j, score

j
i ) | (si, score

j
i ) ∈ P }.

Having defined the score set of a specific subscription, we
now define the preferential subscription graph.

Definition 9. (Preferential Subscription Graph).
Let P be a set of preferential subscriptions and SP the set
of all subscriptions in P . A Preferential Subscription Graph
PSGP (VP , EP ) is a directed acyclic graph, where for each
different si ∈ SP , there exists a node vi, vi ∈ VP , of the form
(si, Wi), where Wi is the score set of si . Given two nodes
vi, vj , there exists an edge from vi to vj , (vi, vj) ∈ EP , if
and only if, si covers sj and there is no node v′

j such that
si covers s′j and s′j covers sj.

For example, assume two users, John and Anna, who ex-
press the following preferential subscriptions: John gives to
subscription s1 = {cinema = ster, genre = drama, time >

21:00} score 0.9, to s2 = {genre = drama, time > 21:00}
score 0.7 and to s3 = {cinema = ster} score 0.5. Similarly,
Anna assigns to s1 score 0.6. For the above preferential
subscriptions, the graph of Figure 7 is constructed.

The preferential subscription graph resembles the filters
poset data structure proposed in [6]. Whereas the filters
poset represents a partially ordered set of subscriptions, the
preferential subscription graph is based on subscriptions en-
hanced with interest scores.

3.2 Forwarding Notifications
To show how the top-k results for each user are computed,

we first assume a single server maintaining a preferential
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subscription graph PSG. In the next section, we general-
ize our approach for more servers. This single server acts
as an access point for all subscribers and publishers. Al-
though publish/subscribe systems are typically stateless, in
the sense that they do not maintain any information about
previous notifications, here, we need to maintain some infor-
mation about previously sent top-ranked notifications. The
server maintains a list of k elements for each of the sub-
scribers (users) that are connected to it. These lists contain
elements of the form (score, expiration) where score is a nu-
meric value and expiration is a time field. The score part
of such a pair represents the score of a notification that has
already been delivered to the corresponding user and ex-
pires at time expiration. Only the scores corresponding to
the top-k most preferable valid notifications that have been
already sent to the users appear in these lists.

All lists are initially empty. Whenever the server receives
a notification n, it walks through its PSG to find all sub-
scriptions that cover n. For each subscriber j associated
with at least one of these subscriptions, a score sc(n, j)
is computed: assuming that m subscriptions s1, s2, . . . , sm

submitted by j cover n, then sc(n, j) = max {scorej
1
, score

j
2
,

. . . , scorej
m}. After that, the corresponding list, denoted

listj , is checked and all elements which have expired are re-
moved. If listj contains less than k elements, n is forwarded
to j and the pair (sc(n, j), n.exp) is added to the list, where
n.exp is the expiration time of n. Otherwise, n is forwarded
to j only if sc(n, j) is greater or equal to the score of the el-
ement with the minimum score in the list. In this case, this
element is replaced by (sc(n, j), n.exp). Note that, a more
recent notification equally important to an older one is for-
warded to the user to favor fresh data over equally-ranked
old ones. The process described above is summarized in the
Forward Notification Algorithm shown in Algorithm 1.

Next, we prove the completeness and correctness of Algo-
rithm 1. First, we will show that if a notification n belongs
to the top-k results of user j, then it will be forwarded to j.
Assume for the purpose of contradiction, that such a notifi-
cation is not forwarded to j. Let sc(n, j) be the score of n

for j. Since n is not forwarded to j, there exist k valid noti-
fications n1, . . . , nk with scores sc(n1, j), . . . , sc(nk, j) such
that sc(ni, j) > sc(n, j), 1 ≤ i ≤ k. This means that n

does not belong to the top-k results of user j, which vio-
lates our assumption. Next, we proceed with showing that
if a notification n is forwarded to j, then it belongs to the
user’s top-k results. For the purpose of contradiction, as-
sume that n does not belong to the user’s top-k results. This
means that there exist k valid notifications n1, . . . , nk with
scores sc(n1, j), . . . , sc(nk, j) such that sc(ni, j) > sc(n, j),
1 ≤ i ≤ k. Therefore, according to Algorithm 1 (line 21), n

will not be forwarded to j, which is a contradiction.
Note that it is not necessary to walk through all nodes

of the preferential subscription graph to locate the subscrip-
tions that cover a specific notification. We may safely ignore
a node v with subscription s for which there is no other node
v′ with subscription s′, such that s′ covers s and at the same
time s′ covers n. This way, entire paths of the graph can be
pruned and not used in the matching process.

3.3 Hierarchical Topology of Servers
An event-notification service can be implemented over

various architectures. At one extreme, a centralized ap-
proach can be followed, e.g. [10]. In this case, a single server

Algorithm 1 Forward Notification Algorithm

Input: A notification n and a preferential subscription graph
PSG.

Output: The set of subscribers ResSet n will be forwarded to.

1: Begin
2: ResSet = Ø;
3: tmpW = Ø; /* temporary score set */
4: for all nodes vi in PSG do

5: if si covers n then
6: tmpW = tmpW ∪ Wi;
7: end if

8: end for
9: for all subscribers j that appear in tmpW do

10: sc(n, j) = max{score
j
1
, . . . , score

j

mj}, where (j, score
j
i )

∈ tmpW , 1 ≤ i ≤ mj ;
11: for all elements i in listj do
12: if i has expired then

13: remove i from listj ;
14: end if

15: end for
16: if listj contains less than k elements then

17: add (sc(n, j), n.exp) to listj ;
18: ResSet = ResSet ∪ j;
19: else
20: find the element i of listj with the minimum score;
21: if sc(n, j) > i.score then

22: remove i from listj ;
23: add (sc(n, j), n.exp) to listj ;
24: ResSet = ResSet ∪ j;
25: end if

26: end if
27: end for

28: return ResSet;
29: End

gathers all subscriptions and notifications and carries out
the matching process. However, due to the nature of such
systems, where participants are physically distributed across
the globe, a distributed architecture is more scalable. When
more than one server exists in the network, each server runs
Algorithm 1 for its own preferential subscription graph. No-
tifications are propagated among servers based on the server
topology. The servers of the system are responsible for col-
lecting all the published notifications and carrying out the
selection process, i.e. delivering each notification only to the
subscribers that have declared their interest to it.

We consider a hierarchical topology, where the servers
that implement the event-notification service are connected
to each other to form a hierarchy. Each publisher and sub-
scriber is connected to one of the servers in the hierarchy.

Furthermore, we wish to organize the participants of the
network in an efficient way, i.e. in a way that will reduce
the number of messages exchanged between the servers and
the complexity of the maintained data structures. One way
to achieve this is by placing subscribers with similar sub-
scriptions nearby in the hierarchy, so that the notifications
covered by those subscriptions need to be propagated only
toward this part of the hierarchy.

While in most publish/subscribe systems, new subscribers
randomly select a server to connect to, in our approach,
when a new subscriber enters the network it probes a num-
ber of servers and chooses one of them according to a number
of criteria:

• (Criterion 1 ) The number of new nodes added to the
highest level of the server’s preferential subscription
graph. The smaller the number of such nodes, the
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Figure 8: Clustering.

fewer the additional notifications that should be prop-
agated to the server in the future.

• (Criterion 2 ) The number of nodes in the server’s pref-
erential subscription graph. The fewer the nodes in the
graph, the lower the complexity of searching it.

A new subscriber X chooses a server to subscribe accord-
ing to the above criteria. For instance, X may first use
Criterion 1, and in case of a tie, Criterion 2. For example,
consider the case of Figure 8a where there are two servers,
Server A and Server B, both already storing some user sub-
scriptions from subscribers X1 and X2. Assume that a new
subscriber X3 wishes to insert a new preferential subscrip-
tion ({genre = comedy, length > 120}, 0.7) to the system.
If X3 chooses Server A to subscribe, the result will be the
one shown in Figure 8b. If X3 chooses Server B, the result
will be the one shown in Figure 8c. Using the first crite-
rion, X3 will choose to join Server A because in this case no
new nodes will be added to the highest level of the PSG of
Server A and thus, no new message traffic will be generated
(except from the messages sent from Server A to X3).

4. SUBSCRIPTIONS USING A QUALITA-
TIVE MODEL

Preferential subscriptions as defined in Section 2.2 exploit
the notion of quantitative preferences. Here, we discuss how
to express preferential subscriptions using a qualitative pref-
erence model.

Assume that a user X provides a set of subscriptions SX
P .

To define choices between subscriptions, X expresses prior-
ity conditions of the form si ≻ sj , si, sj ∈ SX

P , to denote
that si is preferred to sj for X. Let CX be the set of pri-
ority conditions expressed by user X, i.e. CX = {(si ≻ sj)
| si, sj ∈ SX

P }. To extract the most preferable subscriptions
CX , we use the winnow operator [8]. In particular, the first
application of the winnow operator returns the set winX (1)
of subscriptions si ∈ SX

P such that ∀si ∈ winX (1) there is
no sj ∈ SX

P with sj ≻ si. If we would like to retrieve further
the most preferable subscriptions after the ones included in
winX (1), we apply the winnow a second time. winX (2)
consists of the subscriptions si ∈ (SX

P −winX(1)) such that
∀si ∈ winX (2) there is no subscription sj ∈ (SX

P −winX (1))
with sj ≻ si. The winnow operator may be applied until all

subscriptions are returned. To locate the subscriptions that
belong to a specific winnow result set, we define the multiple
level winnow operator.

Definition 10. (Multiple Level Winnow Operator).
Assume a user X and let SX

P be the set of X’s subscrip-
tions. Let CX be the set of priority conditions of X, the
multiple level winnow operator at level l, l > 1, returns a set
of subscriptions, winX (l), consisting of the subscriptions si

∈ SX
P − ∪l−1

q=1
winX (q) such that ∀ si ∈ winX (l) ∄sj ∈ SX

P

− ∪l−1

q=1
winX(q) with (sj ≻ si) ∈ CX .

To compute the top-k results for each user when priority
conditions between subscriptions are specified, we modify
the process described in Algorithm 1 as follows. Again, each
server maintains a list of k elements for each user that is
connected to it. These lists now contain elements of the
form (pos, expiration) where pos represents a position value
and expiration is a time field. The pos value denotes the
winnow level that a subscription that covers a notification
which has already been delivered to the user belongs to,
and expiration the time instance the notification expires.
Again, only the elements corresponding to the top-k most
preferable valid notifications that have been already sent to
the users appear in these lists. In this work, we assume that
there are no conflicting priority conditions.

Whenever the server receives a notification n, it walks
through its PSG to find all subscriptions that cover n. For
each subscriber j associated with at least one of these sub-
scriptions, a value rank(n, j) is calculated: assuming that
m subscriptions s1, s2, . . . , sm submitted by j cover n, then
rank(n, j) = min {level

j
1
, level

j
2
, . . . , leveljm}, where level

j
i

denotes the winnow level that the subscription si belongs to.
In the following, the corresponding list, listj , is checked and
all expired elements are removed. If listj contains less than
k elements, n is forwarded to j and the pair (rank(n, j),
n.exp) is added to the list, where n.exp is the expiration
time of n. Otherwise, n is forwarded to j only if rank(n, j)
is less or equal to the rank value of the element with the
maximum rank in the list. In this case, this element is re-
placed by (rank(n, j), n.exp).

5. EVALUATION
To evaluate our approach, we have extended the SIENA

event notification service [4], a multi-threaded publish/sub-
scribe implementation, to include preferential subscriptions.
We refer to our implementation as PrefSIENA. Our source
code is available for download at [3].
System Description: To evaluate the performance of our
model, we use a real movie-dataset [2], which consists of
data derived from the Internet Movie Database (IMDB) [1].
The dataset contains information about 58788 movies. For
each movie the following information is available: title, year,
budget, length, rating, MPAA and genre.

string title = LOTR: The Return of the King

integer year = 2003
integer length = 251
integer rating = 9

string mpaa = PG-13
string genre = Action

Figure 9: Generated notification.

Each publisher randomly selects mP numbers from 1 to
58788. For each of the corresponding mP movies, the pub-
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lisher creates a new notification consisting of the title, year,
length, rating, MPAA and genre of the movie. An example
of such a notification can be seen in Figure 9. Each sub-
scriber generates mS subscriptions and each subscription
is generated independently from the others. We randomly
select a number of the available attributes to appear in a
subscription. The value of each attribute can be generated
using either a uniform (i.e. all values are equally preferable)
or a zipf distribution (i.e. some values are more popular)
according to the values appearing in the dataset. In both
cases, a subscription is associated with a numeric score uni-
formly distributed in [0, 1]. Subscription examples can be
seen in Figure 10.

string genre = Romance

0.3integer length > 120
string mpaa = PG-13

string genre = Drama

0.6
integer length > 100

integer year < 1980

integer rating > 6

Figure 10: Generated subscriptions.

Experiments: To run our experiments, we assume a net-
work in which each computer node can act as a publisher,
subscriber or server. A combination of these roles is also
possible. The servers are organized in a hierarchical topol-
ogy while clients (i.e. publishers and subscribers) can be
connected to any one of the servers. Each involved client
executes a series of service requests. More specifically, each
publisher generates a number of notifications and injects
them into the network. All notifications expire after time τ

of their publication. Each subscriber generates a number of
subscriptions and chooses a server to connect to and sub-
scribe. After that, each subscriber waits for notifications to
arrive.

In general, the number of delivered notifications depends
on the covering relations between the various subscriptions
and published notifications, the scores associated with these
subscriptions and the order in which notifications are gener-
ated. The notification receipt rate for each individual user
can be fine-tuned by letting the user define appropriate val-
ues for refreshing the subscriptions (so that the expiration
times of the corresponding notifications are set accordingly)
and by selecting k.

First, we measure the number of notifications delivered to
a specific subscriber using PrefSIENA as a function of the
number k of the top results the subscriber is interested in.
We run this experiment with 100 matching events and for
expiration time τ equal to 15t and 20t, where t = 500ms is
the time length between the generation of two notifications.
Note that t refers to real, and not simulated, time. We con-
sider the following two scenarios. In the first one, scenario 1,
most of the notifications with higher scores for the user are
published early, while in the second one, scenario 2, notifica-
tions with higher scores arrive towards the end. We observe
that in the first scenario the user receives fewer notifications
than in the second one (Figure 11). This happens because in
the first scenario, where notifications with higher scores ar-
rive first, many of the notifications with lower scores cannot
enter the top-k results, until some of the first ones expire.
In the second scenario, however, the user receives both the
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notifications with the lower scores that arrive first and the
notifications with higher scores that arrive later. In both
scenarios, the number of delivered notifications decreases
with the increase of the expiration time. This happens be-
cause notifications with higher scores for the user remain
in the top-k results for a longer time period and prevent
notifications with lower scores from reaching the user.

Furthermore, we measure the number of notifications de-
livered to a number of different users in the following cases:
(i) using SIENA, (ii) using PrefSIENA with no expiration
time for notifications and (iii) using PrefSIENA with a num-
ber of different expiration times. The number of published
events is 200 and their expiration time τ takes values from
t to 60t, where t = 500ms. All subscribers submit 5 dif-
ferent subscriptions and are interested in the top-1 result.
We select to show results for three users according to the
percentage of notifications that are covered by their sub-
scriptions. The subscriptions of user 1 cover 51% of the
generated notifications. For user 2 and user 3, the per-
centage values are 27% and 15% respectively. In Figure 12,
we depict the results for these three users. We count the
percentage of delivered notifications in PrefSIENA over the
number of notifications in SIENA. By varying the expira-
tion time, we can achieve different notification receipt rates.
This rate depends on the scores of users subscriptions, and
also, on the specific time that various notifications in the
top-k results expire, as shown by the previous experiment.
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We also experimented with using the clustering criteria
described in Section 3.3 during bootstrapping. We observed
a 27% reduction on average of the total messages exchanged
between nodes of the system, even though in this case we
have an overhead of extra messages during bootstraping.

6. RELATED WORK
Although there has been a lot of work on developing a

variety of publish/subscribe systems, there has been only
little work on the integration of ranking issues into pub-
lish/subscribe. Recently, [18] considers the case of continu-
ous queries in distributed systems. In this approach, only a
subset of publishers provide notifications for a specific query.
These publishers are selected according to the similarity of
their past publications to the query. Similarity is computed
via IR techniques. In [17], user preferences are employed to
deliver newly added documents of a digital library to the
users. Next, we discuss work related to publish/subscribe
systems and preferences.
Publish/Subscribe Systems: The publish/subscribe pa-
radigm can be applied to a number of different architectures.
The naive approach is to gather all subscriptions and events
to a specific node. This node will be responsible for man-
aging subscriptions, matching the incoming events against
them and notifying the appropriate subscribers. This is a
centralized approach (e.g. [10]). Often, in publish/subscribe
systems the number of participating nodes becomes very
large. For scalability reasons, a distributed architecture
seems to be more suitable. In this case, the event service is
implemented via a network of interconnected servers who act
as a middle level for the communication of publishers and
subscribers. Various distributed architectures such as hier-
archical [6] and DHT-based [7] ones, have been proposed.

There are two widely used methods for users to express
their subscriptions: the topic-based method and the content-
based one. In the topic-based method (such as [14]) there
are a number of predefined event topics, usually identified by
keywords. Published events are associated with a number of
topics. Users can subscribe to a number of individual topics
and receive all events associated with at least one of these
topics. In the content-based method [6, 7], such as the one
used in this paper, the classification of the published events
is based on their actual content. Users express their sub-
scriptions through constraints which identify valid events.
An event matches a subscription, if and only if, it satisfies
all of the subscription’s constraints. In general, the content-
based method offers greater expressiveness to subscribers
but is harder to implement.
Preferences: The research literature on preferences is ex-
tensive. In general, there are two different approaches for
expressing preferences: a quantitative and a qualitative one.
In the quantitative approach (such as [5, 13, 16]), preferences
are expressed indirectly by using scoring functions that as-
sociate numeric scores with data items. In the qualitative
approach (e.g. [8, 12, 11]), preferences between data items
are specified directly, typically using binary preference rela-
tions.

7. CONCLUSIONS
To control the amount of data delivered to users in pub-

lish/subscribe systems, we extend such systems to incorpo-
rate ranking capabilities. In particular, in this paper, we

address the problem of ranking notifications based on pref-
erential subscriptions, that is, user subscriptions augmented
with interest scores. To maintain the freshness of data de-
livered to users, we associate expiration times with notifi-
cations. We organize preferential subscriptions in a graph
and utilize it to forward notifications to users. We have
fully implemented our approach in SIENA, a popular pub-
lish/subscribe middleware system.

There are many directions for future work. One is consid-
ering alternative approaches for achieving timeliness, such
as computing top-k results over sliding windows of notifi-
cations. Among our future plans is also studying a weight-
ing scheme based on both time and relevance for ranking
notifications. Finally, the focus of this paper has been on
enhancing the expressiveness of publish/subscribe systems.
Besides expressiveness, performance is also central in such
large-scale dynamic systems. In this respect, we plan to con-
sider additional topologies besides the hierarchical one used
in this work.
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ABSTRACT
Synchronization gained great importance in modern applications
and allows mobility in the context of information technology. Users
are not limited to one computer any more, but can take their data
with them on a laptop. Two common architectures have been devel-
oped recently, the Data-Centric Architecture as well as the Service-
Oriented Architecture. This paper compares two existing technolo-
gies for the implementation of a mobile client and introduces a new
approach, developed based on the requirements of a major insur-
ance company, the Context-Oriented Architecture. This approach
allows detection and resolution of conflicts within the context in
which the objects were changed, while still ensuring data correct-
ness and consistency. Therefore two new synchronization con-
cepts are introduced: the synchronization of complex objects and
dialogue-sensitive synchronization. An application implementing
this approach has been realized and successfully deployed.

1. INTRODUCTION
The context-oriented synchronization approach introduced in

this paper has been developed for the PreVolution project, executed
by the Software Competence Center Hagenberg (SCCH) and the
Institut Fuer Anwendungsorientierte Wissensverarbeitung (FAW)
on behalf of the Austrian Social Insurance Company for Occupa-
tional Risks (AUVA).

Approximately 3 million employed people and 1.3 million
school children and students are by law insured by this company.
The AUVA takes care of victims of occupational accidents and dis-
eases, a major goal therefore being the prevention of such accidents
and diseases. This is the domain where PreVolution is settled.

The aim of PreVolution is to support consultants visiting the
companies for advice and physical examination of their employees.
The consultants need to synchronize data available at the AUVA
onto their laptops to extend and modify the data at the company
site. Since several consultants can visit the same company simulta-
neously conflicts are possible and should be presented to the con-
sultant for resolution. Additionally, the synchronization process
has to perform several tasks like business processes during syn-
chronization, changing data as well as unique-constraint violation
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recognition. Based on these requirements, using a standardized
synchronization concept was not possible and an own synchroniza-
tion approach had to be implemented.

Therefore, this paper covers the challenges of implementing an
own synchronization process and contributes two new synchroniza-
tion concepts:

• Synchronization of Complex Objects

• Dialogue-Sensitive Synchronization

After an introduction of these concepts in Chap. 2 and a compar-
ison with other research work in Chap. 3, we will discuss a data-
centric as well as a service-oriented synchronization architecture
in Chap. 4, followed by the new approach of a context-oriented ar-
chitecture. Chap. 5 will describe the implementation of a context-
oriented synchronization in detail. Chap. 6 will present two ex-
isting Microsoft technologies for the implementation of a mobile
client. This will be the Smart Client Offline Application Block on
the one hand and the Synchronization Services for ADO.NET on
the other. Finally, Chap. 7 will present the most important lessons
learned.

2. NEW SYNCHRONIZATION CONCEPTS
In its first section, this chapter focuses on the definition of the

term conflict in order to follow up with a description of the new
synchronization concepts. The second section introduces the syn-
chronization of complex objects followed by the dialogue-sensitive
synchronization in the third section.

2.1 Conflicts Defined
A conflict can only occur when two databases have a copy of a

complex object CO with write-permission and the complex object
is changed on both sides. A complex object consists of objects that
conceptually belong together in the sense of real-world modelling.
For more information on complex objects see [1].
COs complex object on the server; consists of data records from
different tables A . . . Z called sub object aA . . . aZ with aA being
the root sub object.
CO1 Copy of CO on client 1.
CO2 Copy of CO on client 2.
td1, td2 point in time when CO1, CO2 are created/downloaded.
tc1, tc2 point in time when sub object aI of CO1 and sub object aJ
of CO2 are changed⇒ CO′

1 and CO′
2 with tc1 6= 0 and tc2 6= 0

(changes occurred on both sides).
ts1, ts2 point in time when CO′

1, CO′
2 are synchronized.

tcs point in time when complex object is changed on server.
Precondition:
td1 ≤ tc1 ≤ ts1 as well as td2 ≤ tc2 ≤ ts2
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Figure 1: Synchronization Concept for Complex Objects

Assumption:
ts1 < ts2 which means client 1 synchronizes before client 2
⇒ tcs = ts1 (when client 1 synchronizes, its version is saved on
the server).
A conflict will occur if:
td2 < ts1 (and complex object is changed on both clients (see
precondition)).
Conflict will be detected at time ts2 when trying to set tcs again
without having seen the former version.

The detection of a conflict is possible by using number ranges
for unique identification (see Chap. 5.3). Every client as well as
the server has an own number range identifying all data records
uniquely. As every sub object, the root sub object of a complex ob-
ject has a unique ID. CO1 and CO2 are copies of the same complex
object if the ID of the root sub object is identical.

The allowed operations are Insert, Update and Delete. Delete is
only allowed in a few tables which are checked out (see Chap. 5.5)
by the client. The conflict scenarios Update-Delete and Delete-
Delete are therefore not possible. For the deletion of objects and
the synchronization afterwards the concept of SyncServices (see
Chap. 6.2) is used and a tombstone table maintains all deleted
records. Through the synchronization process the entries in the
tombstone table are sent from client to server, executed on server
side and stored in the server tombstone table. When another client
downloads data it will receive the new entries from the tombstone
table and can delete the records locally.

Additionally, an Insert-Insert conflict is not possible either.
Since every client and server has an own number range, the IDs
will not be violated during synchronization.

The only possible conflicting operation is Update-Update.

2.2 Synchronization of Complex Objects
The synchronization concept for complex objects is shown in

Fig. 1. For example, Table A may contain the zip code and city
of an address. Table C contains the street name and street num-
ber. The objects conceptually belong together and form a complex
object address.

Objects that conceptually belong together in the sense of real-
world modelling are treated as one complex object so that conflicts
can be detected even if data records from different data tables have
been changed. A normal data replication approach would not detect
the conflict and merge the data without displaying it to the user. Our
approach offers a solution in this problem. Developers can specify
which object classes form a complex object class. This information
is then exploited at synchronization time.

There are three reasons why synchronizing complex objects can
be a better approach:

• The data model can be normalized and does not have to con-
sider dependent data. For example, an address can be split
up in different tables with the street name in one table and
the zip code in another table. If one user changes the street
name of a person and another user changes the zip code, a
merge can lead to a nonexistent address and is therefore un-
desirable. A conflict detection is necessary.

• The data model can change, nevertheless the same conflicts
are detected. For example, the data model changes and splits
up the person in two different tables. A data replication ap-
proach will detect two different conflict types based on the
tables instead of one conflict for the entire person. When
synchronizing complex objects the conflict will always be
deteced within the entire person.

• Detecting conflicts on objects instead of data tables is more
understandable for the user. For example, the complex object
contact person has data from five different tables and is dis-
played to the user in one dialogue. If the user changes data
on both, the client and the server he expects a conflict inde-
pendent of the specific data records he has changed. In a data
replication approach the user can change two different values
and whether or not he will run into a conflict depends on the
question if the two changed values are physically stored in
the same table. Eventually, this might be confusing for the
user.

Since contact person will be often used as an example for a com-
plex object it will now be explained briefly. A contact person is a
person being the contact person for a concrete company. One per-
son can work for several companies and can therefore be contact
person for more than one company. A contact person is a complex
object containing of data from five different data tables. The data
table person contains information about the person itself like name,
title and birth date, the data table contact person provides informa-
tion related to the company e.g. the e-mail address and telephone
number of the person in the company, the data table contact person
function contains the function of the contact person in the company
e.g. CEO or secretary and the last data table is address which is
connected to the person providing the private address and to the
contact person containing the business address.

2.3 Dialogue-Sensitive Synchronization
The dialogue-sensitive synchronization concept is shown in

Fig. 2. It offers a better decision support in the conflict resolu-
tion domain. The dialogue context where the change has occured
is saved and presented to the user in the conflict display.

In Fig. 2 class A may stand for a contact person and class B may
stand for a person. One physical person can be contact person for
two different companies. The first user changes the person in the
context of contact person A1 on the server whereas the second user
changes the same person in the context of contact person A2 on
the client. The dialogue-sensitive synchronization concept allows
the user to see the conflict in the context of the contact person he
has changed, so the server version of the conflict shows the person
with contact person A1 and the client version shows the person with
contact person A2.

In this paper, ”context” refers to the business logic view of ob-
jects rather than to the data view (e.g. person and contact person
are two different tables but in business view they form one complex
object).
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This concept is not limited to the same complex object. The
first user can change a person in the context of the complex object
patient, whereas the second user changes the same person in the
context of a contact person.

3. RELATED WORK
Several papers have studied the issue of developing synchroniza-

tion for mobile environments (e.g. [2, 3]). To improve synchro-
nization, information about data provenance is needed, which is
covered in detail in [4] and [5].

In [4] Foster and Karvounarakis studied provenance in the area
of data replication for different devices. Replicas have to be trans-
formed for different devices, which leads to difficulties in view up-
date and maintenance.

In [5] Buneman et al. investigate data provenance and differ be-
tween ”Why” and ”Where” provenance. Data provenance describes
where data comes from and the process in which the data was cre-
ated or changed. ”Why” refers to the source data that influenced the
existence of the new data and ”Where” identifies the origin location
of the data.

In [6] Cui and Widom studied lineage tracing for data ware-
houses. During the integration of an operational data source into
a data warehouse, source data is typically transformed. Data lin-
eage covers the problem of tracing the derived data items to the
original source items.

The process by which the data arrived in the database is also im-
portant in our approach in order to identify the complex object in
which a data record was created or changed. Additionally, in a sim-
ple way this paper introduces a kind of ”Who” provenance, where
”Who” stands for the user who made the change in the database.
This makes it possible to display the users, who made the changes
that lead to a conflict. Similar to [4] the information is stored as
metadata in the database in both cases. This is necessary to support
the user with conflict resolution.

In [7] transaction processing techniques are described and used
to monitor, control and update information. Transaction processing
keeps a database in a consistent state by completing all transactions
successfully or rolling them back otherwise. The book therefore
covers fault tolerance, concurrency control as well as recovery and
rollback. Keeping the database in a consistent state, identifying
autonomous operations and rolling back transactions in case of an
error is a demanding topic in most synchronization approaches.

In [8] Lee et al. studied data synchronization in mobile environ-
ment with focus on conflict resolution. For this implementation,

SyncML was selected. Aspects of the synchronization are the us-
age of Global Unique Identifiers GUIDs to uniquely identify a data
record and the usage of a change log which stores all changes that
have to be synchronized. The advantage of a change log is a better
performing synchronization since the single synchronization steps
do not need to be reconfirmed and the execution process can be op-
timized locally. The aim of their approach is an automatic synchro-
nization which needs a conflict resolution policy like originator-
win, recipient-win, client-win, server-win, duplication or recent-
data-win. From all these possible conflict resolution policies the
recent-data-win policy has been selected. An automatic conflict
resolution alleviates synchronization for the user and makes sense
when all changes are made by the same user on different devices.
However, when the changes are performed by different users, using
a policy is a problem, especially when the policy decides that one
change will overwrite the other. In contrast, our paper is based on
the assumption of a mobile environment with many different users
that change the same data in parallel, and it therefore offers an ap-
proach that supports manual conflict resolution.

Other related work about replication of data for mobile environ-
ments can be found in [9, 10]. In [9] Ratner et al. identified require-
ments for replication in a mobile environment. In [10] Barbara and
Garcia-Molina studied dynamic replicated data management algo-
rithms for generating and migrating replicated copies. Addition-
ally, several different replication approaches for mobile systems
are compared in [11]. Although a data replication approach might
make things easier, there are some disadvantages to it, as well as
requirements it can not fulfill. Chap. 4.1 will elaborate this fact.

4. SYNCHRONIZATION
ARCHITECTURES

In this chapter two existing approaches for exchanging data be-
tween client and server are illustrated and evaluated. The first ap-
proach is the Data-Centric Architecture followed by the Service-
Oriented Architecture. Since both approaches do not fit the require-
ments, a new architecture approach, the Context-Oriented Architec-
ture has been developed and is discussed in Chap. 4.3.

4.1 Data-Centric Architecture
In a Data-Centric Architecture shown in Fig. 3 the database of

the server is fully or partly replicated to the client database and data
differences are merged. Changes can be tracked and conflicts can
be detected.

Oracle supports synchronization between two Oracle databases
with conflict detection [12]. However, the conflict resolution is
based on simple rules like client-wins, server-wins or a custom pro-
grammatic resolution.

The advantages of this approach are that a lot of research has
been made in this area and that well tested solutions are available.
The disadvantages are that for this approach both databases must
be compatible.

Additionally, the server database must be reached directly by the
client. This can be acceptable when the server database is only ex-
posed to a secure intranet but might be a security risk if the clients
access from the Internet as required in the approach described in
this paper. Moreover, a conflict resolution policy will automatically
override changes of one user. Even if there would be the possibil-
ity to display the conflict and let the user decide, a conflict would
only be displayed based on the actual table but not on the context
in which the object was changed. See Chap. 5.6 for more details on
context-oriented conflict detection and resolution. Another disad-
vantage of Data-Centric Architecture is the difficulty of replicating
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parts of a table based on objects as discussed for the SyncServices
in Chap. 6.2. The required where-statements will be quite com-
plex. Last but not least it is sometimes necessary to change data
during replication, e.g. check data out and save it without a lock
on the client or load data and save it read-only on the client. After
considering these issues, a data-centric approach was not the right
choice to fulfill all requirements.

4.2 Service-Oriented Architecture
The goal of Service-Oriented Architecture (SOA) (also shown in

Fig. 3) is loose coupling between interacting components. There-
fore, a service, which can be a Web Service, is offered on the net.
The business logic on the client calls the server-sided Web Service.
The data model of client and server can be different and in addi-
tion, the client is responsible for conflict detection and resolution,
which requires custom-implemented conflict handling. Advantages
of SOA are the independence of the database, so databases from
different vendors can be used, as well as the possibility to pro-
vide better security mechanism for the server database. A disad-
vantage of SOA compared to Data-Centric Architecture is worse
performance. However, the concept of synchronization over Web
Services is also used in the Context-Oriented Synchronization Ap-
proach.

4.3 Context-Oriented Architecture
As both described architectures are not capable of detecting and

resolving a conflict based on the context, a new approach, the
Context-Oriented Architecture, is developed and shown in Fig. 4.
Similar to the Service-Oriented Architecture, this approach uses a
Web Service for communication with the server. The synchroniza-
tion however is based on objects which are created using an O/R-
Mapping tool. Every object has data from the database which is
not only composed of a single relational record but several records
across many tables. Client and server have relational databases with
an additional table to maintain the metadata of the objects and save
the context of changes.

Compared to the Data-Centric Architecture, the data model on
client and server has to be similar, to be able to create compati-
ble objects. However, a Data-Centric Architecture disposes of only
basic conflict handling capabilities and does not support business
processes during synchronization. As an example in PreVolution
it is a requirement, that an offline created company has to be for-
warded to the supervisor for approval during synchronization.

The Context-Oriented Architecture is similar to the Service-
Oriented Architecture as both use Web Services for communica-
tion and benefit from loose coupling. Still, Service-Oriented Archi-
tecture is defined as requiring independent and committed transac-
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tions, which is not the case in our approach. The synchronization
requires several dependent Web Service calls.

The advantage of the Context-Oriented Architecture is that as it
is based on objects, it is also possible to synchronize defined subsets
of the database and still guarantee consistency. This is an impor-
tant feature as illustrated in the following example: Some tables on
the server-sided database are insert-once restricted and data from
these tables can be kept offline and changed several times until the
user releases and commits the data. Nevertheless it is possible to
synchronize the rest of the data in between, providing better data
safety and performance through partial upload.

5. CONTEXT-ORIENTED
SYNCHRONIZATION

This chapter describes the implementation of the Context-
Oriented Synchronization Approach in PreVolution in detail. The
first section gives an overview of the architecture, the second
briefly describes the Genome O/R-Mapping tool and the third sec-
tion explains data model and number ranges. The fourth section
deals with data upload from client to server, whereas the fifth sec-
tion discusses the opposite direction, downloading data from server
to client. The sixth section covers the demanding topic of conflict
detection and resolution and the last section elaborates on some
challenges encountered while implementing the Context-Oriented
Synchronization Approach.

5.1 Architecture
This section describes the architecture of PreVolution, as dis-

played in Fig. 4. On the client side Oracle XE is used as local
database, while Oracle Database 10g is used on the server side.

In a previous implementation Microsoft SQL Desktop Engine
(MSDE) was used on the client, but incompatibilities between the
two databases were encountered (e.g. Unique in SQL allows only
one NULL value, whereas Oracle can have several NULL val-
ues, or slightly different data types between the two databases)
so MSDE was exchanged for Oracle XE. However our new syn-
chronization approach does not need two databases from the same
vendor, it works with MSDE as well.

Both, client and server, use Genome (see Chap. 5.2) as Data Ac-
cess Layer and O/R-Mapping tool.

The Business Logic (shown in Fig. 5) is identical on client and
server, so there is no difference between working online or offline.
The client uses the ILogic Interface and depending on the client be-
ing online or offline, the specific instance of ILogic is either Logic-
ToServer or LogicToDatabase. When being online, LogicToServer
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is called, the call is forwarded to the Web Service Façade and af-
ter calling a Controller the logic in LogicToDatabase is executed,
which queries the server-sided Oracle database. When the client is
offline, LogicToDatabase is called directly and queries are executed
on the local Oracle XE instance.

Web Service Facade

ILogic

LogicToServer

LogicToDatabase

online

offline

Controller

Figure 5: Business Logic

Finally the client provides the graphical user interface and the
connection manager from the Smart Client Offline Application
Block (see Chap. 6.1), whereas the server includes a Web Service
Façade.

5.2 O/R-Mapping with Genome
Genome [13] developed by TechTalk is used as Data Access

Layer. Genome is an O/R-Mapping tool for .NET and supports Or-
acle, Microsoft SQL Server and IBM DB2 as databases. Genome
supports lazy loading (objects of a result set or attributes of an ob-
ject are not loaded until they are needed) as well as optimistic and
pessimistic locking.

Optimistic locking allows concurrent access, however when sev-
eral clients try to commit changes, only the first client commits
successfully and the other clients receive an exception. The disad-
vantage of optimistic locking in Genome is that an additional ver-
sion field is necessary in every database table. As this version field
has to be set by every application updating a row in the database,
optimistic locking was not possible in the approach described in
this paper since other applications use the same database.

The advantage of pessimistic locking is that the client knows up-
front that data is locked and that it will not lose any changed data.
In the present approach pessimistic locking is used and data will
only be committed once the lock is released. Additionally the com-
munication with the database is executed in a context which differs
between ReadOnlyContext for read-only and ShortRunningTrans-
actionContext for read/write.

The description of the data model in Genome is XML-based.
For each table an Entity is created and these Entities are combined
to Objects. There are two different kinds of objects: the first are
the normal Genome-Objects, which are high-performance, but can
not be transmitted over a Web Service. The second type is the
Data Transfer Objects (DTOs), which are defined through Genome
Views and can be transmitted over a Web Service. A disadvantage
of Genome is that it only offers methods to serialize the Entities
based on a View into a DTO but not to deserialize them on the
other side.

Supported query languages are Object Query Language (OQL)
and LINQ, which is new and was not supported until October 2007.
Although Genome is an important and very beneficial tool in PreV-
olution, it has no mechanism for either synchronization or conflict
handling.

5.3 Data Model and Identification
As common in many projects, the database on the server is not

only used by PreVolution but also by other existing applications in-
side the AUVA. Therefore changes in the existing data model are
difficult. Global Unique Identifiers (GUID) as used in [8] would
have been the ideal method for data record identification. How-
ever, every table has a 64-bit long number as a primary key. An-
other approach was using negative IDs on the client for new records
and replacing them later during uploading, but this is complex and
costly and conflicts would have been possible on the server with
new records from other applications. The best-fitting approach was
using number ranges on server and client side. A new client with-
out a number range, requests the number range from the server and
all created records on the client receive an ID from this range. All
used ranges are maintained in a database table on the server.

Every table on client and server has eight additional columns
containing user and date information in columns CreatedBy, Date-
Created, ModifiedBy, DateModified, LockBy, LockDate, and Lock-
Type for recognizing changes and SyncDate for the synchroniza-
tion. The three primary columns are DateModified, LockType and
SyncDate. Whenever a change occurs DateModified is set to the
current date. LockType allows checking out data from the server
or save read-only data on the client. Every lock is saved in this
column. Very important for the synchronization is the client-
sided SyncDate column, which is not populated on server-side.
It contains the date at which the record was last loaded from the
server. Microsoft SyncServices (see Chap. 6.2) have less but simi-
lar columns for maintaining changes.

Another aspect is the SyncTable. This table enables Context-
Oriented Synchronization and allows context-based conflict reso-
lution by saving all objects. Besides the ID this table provides
the columns ObjectType, ObjectReference, conflicts (bool), Sync-
CreatedDate, SyncModifiedDate and LastSyncDate. When down-
loading a contact person with trailed records from the tables per-
son, address and contact person functions, one entry would be in-
serted in the SyncTable. ObjectType would be contact person, Ob-
jectReference the ID of the contact person in the contact person
table and conflict would be false. LastSyncDate and SyncModified-
Date would be the same date, which has been transmitted from the
server. When the client is now offline and changes a property in
the table contact person function, the actual date is saved in Date-
Modified of the contact person function table and additionally in
the SyncModifiedDate of the SyncTable for the concrete complex
object contact person. When synchronizing the changed data can
be extracted from the SyncTable by comparing SyncModifiedDate
with LastSyncDate, and if a conflict occurs in the function, the con-
flict can be resolved within the context of the contact person. For
more information on conflicts see Chap. 5.6.

The next change in the data model is a server-side table called
ReplicationTable.When the client starts synchronization, the ID
and the name of every complex object (e.g. person) that has to
be transmitted to the client is stored in this table. The first advan-
tage is that packages of e.g. 100 persons can be requested by the
client and stored in the local database. It is not necessary to send
all data at once. The second advantage is that the client can abort
the synchronization process after each package and, for example,
continue the next day. In this case the ReplicationTable is updated
with data that changed in the meantime, and the client can continue
the synchronization process.

The data models on client and server are largely the same, al-
though some tables are only used by the client or by the server.
However there is one additional role on the client which has the
right to delete records from all tables. No role has the right to
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Figure 6: Synchronization Flow

delete records on the server.

5.4 Upload
As already mentioned before, Uploading in this paper character-

izes the upload of client data to the server. There are two differ-
ent types of uploads, namely full upload and partial upload (see
Fig. 6). Both identify all offline changed data and send them to the
server. If conflicts occur, both will detect the conflicts and ask the
user to resolve them. However, the partial upload checks if there
are offline changed data available before starting the upload, and
locks on the server will not be removed. The full upload does not
check for changes, it will always start the upload and if nothing has
changed, at least the locks will be removed on the server.

The partial upload is used implicitly when the user wants to
download data. The implicit upload before downloading is nec-
essary, because only the upload can detect conflicts.

The full upload is started explicitly by the user and after sending
all changed data to the server and resolving potential conflicts, the
local database will be largely cleared, except of a few tables, which
need to be always available offline and are therefore never cleared.

There is one more aspect that needs to be mentioned, because
it is one of the challenges described in Chap. 5.7. Addresses are
standardized and allowed to exist only once in the database. When
the user creates offline a new address for a company and this ad-
dress already exists on the server, during upload the objects loaded
from the client are changed to point to the existing address on the
server. The existing address is sent back to the client and stored
in the database. All objects are changed to point to the existing
address from the server and afterwards the client-sided address is
deleted.

5.5 Download
Downloading refers to the download of data from server to client.

A download can only occur after a partial upload, so it is not pos-
sible to run into conflicts during downloads.

There are three different types of data to be downloaded:

• The first group is data that are downloaded read-only. The
existing workflow as well as old orders and documents be-
long to this group.

• The second group consists of data that is checked out from
the server, so the server gets a lock and the data can only be
changed on the client. For example, the current order and the
route belong to this group. No other user should change the

same order at the same time. In these two groups conflicts
are not possible, because data are only changed on one side.

• However, there is a third group which includes data that can
be changed on both sides. Contact persons, patients or eco-
nomic domains belong to this group.

If the user downloads again, the client-sided LastSyncDate is
compared with the server-sided ModifiedDate and changed data is
downloaded again.

If the user has not yet downloaded or performed a full upload be-
fore, and the connection breaks, he can still work offline. There are
data, which are always available offline, and these data are enough
for working with the application.

5.6 Conflict Detection and Resolution
As already mentioned, conflicts are only detected during up-

load. The client sends its changed data and the LastSyncDate to
the server, and if the server has changed the same data, a conflict is
detected.

Conflicts are detected and displayed context-based, this means
that if the client changes the address of a person from Main Street
3a to Main Street 3b and another user changes the address of the
same person to Main Street 3c, a conflict resolution without con-
text would display Main Street 3b versus Main Street 3c. The user
would not be able to decide, because he would not know why and
for whom the address was changed. It would not be possible to
determine the person, for which the address was changed, when
several objects like other persons and companies point to the ad-
dress too. However, the Context-Oriented Synchronization knows
in which context the address was changed and is able to detect and
display the conflict for the person with the address.

There are different possibilities to define a conflict. The first kind
of conflict is when an attribute is changed on both sides and there
is no possibility to merge. This would be the case in the address
example above, because 3b and 3c cannot be merged. Another type
of conflict is characterized by being based on a complex object in-
stead of a single attribute. For example, the client can change the
e-mail address of a contact person and a user on the server changes
the name of the person (note that contact person and person are
two different tables). Without context-oriented conflict detection
it would not be possible to detect this conflict during upload, be-
cause when uploading the persons, no conflict would occur. When
uploading the contact persons later, there would be no conflict ei-
ther. In our approach it is possible to detect this conflict because
the SyncTable tracks that something has changed in the context of
a contact person and uploads the whole contact person as one com-
plex object.

All conflicts are shown to the user when he is online. He sees the
server version with the name of the user who changed it and his ver-
sion with the later changed preselected and can decide which one
to take. The server version of conflicts are regularly updated, since
it is possible that another user changes the server version again.
When the user resolves a conflict, it is again checked whether the
server version has changed in the meantime. If it has, there is a
conflict on a conflict and the user has to decide again which version
to take.

5.7 Challenges
The first challenge in this project was the server-sided data

model, which was not allowed to be changed. Number ranges have
to be used instead of Global Unique Identifiers and the additional
columns for change tracking had to be inserted into separate tables.
A view then combined the two tables. As deletion on server side is
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only allowed for a few tables, there have been some cases, where
the ID from the server has to be taken and replaced on the client
during upload e.g. for standardized addresses.

Another challenge are unique constraints which are not directly
part of the synchronization process but problems can occur during
upload. The synchronization will not treat this as a conflict but it
has to know all unique constraints and if during upload one con-
straint is violated, the user has to be informed that he has to correct
the data offline before trying to upload again.

Error handling and recovery was another challenge. When an
exception occurs during synchronization it is important that both
databases remain in a consistent state. This is achieved on the
one hand by using the Genome transaction context as described
in Chap. 5.2. Using this approach allowed using Genome’s generic
transaction manager instead of using the specific transaction man-
ager provided by an underlying database. A ShortRunningTrans-
actionContext is opened and all changes are defined until one com-
mit persists all changes at once into the database. Therefore partly
committed data within one context will never occur.

On the other hand all methods are designed such that they are in-
dependent from each other. With the help of the ReplicationTable
described in Chap. 5.3 it is possible to download independent pack-
ages of person objects. After saving a package in the local database
the client sends a delivery receipt for the package. If the package
is already stored locally and an exception occurs when sending the
receipt, the server will resend the same package. If the client does
not get a delivery receipt from the server after uploading, it will
also resend the data.

As a result of an exception it is possible that the data in the lo-
cal database has different synchronization dates, however this is
also possible when the user stops the synchronization manually and
does not limit the use of the application.

The last challenge and still not resolved at the moment is the
complete rollback of the synchronization process. One requirement
demands that a rollback is always possible throughout the entire
synchronization process. However, some data are stored on the
server and some on the client and there are several Web Service
calls in between. As the Genome transaction can not be kept open
for such a long duration, this is not easily solvable. However, there
are other options, for example to allow a rollback after each step
during upload and download as described above so that the data are
always consistent.

6. SYNCHRONIZATION TECHNOLOGIES
After describing the Context-Oriented Synchronizaion Approach

and a possible implementation, this chapter will briefly introduce
two promising technologies from Microsoft. The first is the Smart
Client Offline Application Block [14] followed by the Sync Services
for ADO.NET [15]. Both technologies provided ideas for and allow
comparison with the new approach.

6.1 Smart Client Offline Application Block
The Smart Client Offline Application Block (SCOAB) [14] is

an Application Block from Microsoft that has been published first
in 2004, including best practices for the design of an architecture
and for solving problems in the context of online/offline scenarios.
SCOAB comprises best practices, design patterns and examples.
Additionally, the entire code is available as well, allowing to adapt
the Application Block for individual needs. SCOAB is meant to
support the development of offline-capable applications. There-
fore, the data are stored on the client and SCOAB takes care of
the synchronization as soon as a connection is available.

SCOAB uses DataSets for conflict detection. When implement-

ing a prototype in 2005, DataSets did not support conflict resolu-
tion, but basic abilities were added in the meantime. For communi-
cation with the server a Web Service is used and messages are sent
through Microsoft Message Queuing (MSMQ). For data manage-
ment In-Memory, Microsoft Desktop Engine (MSDE) or Microsoft
SQL Server can be used. SCOAB uses several threads, one for the
application, a second for the connection manager and a third for
the messages. Additionally, SCOAB includes an extensive evalua-
tion of possible security risks, as well as suggestions for testcases.
SCOAB is based on .NET-Framework 1.1 but can be upgraded to
.NET-Framework 2.0.

A prototype at the beginning of PreVolution was developed to
evaluate SCOAB. However, SCOAB was largely not included in
the final version of the project since DataSets were not sufficient.
One component of SCOAB, the connection manager, which de-
tects if a connection to the server is available and allows switching
between online and offline modes, has been integrated into PreVo-
lution in slightly modified manner.

6.2 Synchronization Services for ADO.NET
The SyncServices for ADO.NET [15] are a completely new part

of the Microsoft Sync Framework (MSF) and .NET Framework 3.5,
which is integrated in Visual Studio 2008. SyncServices allow four
different synchronization methods:

• Snapshot

• Incremental Download (Insert, Update, Delete)

• Upload (Insert, Update, Delete)

• Bidirectional Synchronization with Conflict Handling

Microsoft SQL Server Compact Edition 3.5 (CE) has to be used as
local database, which is only slightly different from Microsoft SQL
Express Edition, but takes less space, is stored in one file and can
store data up to 4 GB. The database on the server can be Microsoft
SQL Server or another database like Oracle or DB2. SyncServices
allow communication over Web Services. SyncTable objects de-
termine the tables to be synchronized; several SyncTables can be
grouped into a SyncGroup, which is always synchronized within
one transaction, so a rollback is possible.

SyncServices were evaluated for approximately one month in
several prototypes and demos but were not appropriate for our re-
quirements due to the following issues:

• Conflict resolution is not fully developed at the moment,
some conflicts have to be resolved on the server or the pro-
cess has to be suspended.

• SyncServices are completely new, Visual Studio 2008 has
to be used and documentation is rare. Additionally, Micro-
soft SQL Server Compact 3.5, which has some compatibility
problems with Oracle, is a must on the client.

• Changes while downloading (e.g. setting a lock) cannot be
done during the synchronization process but require a sepa-
rate SQL-Statement. However, this would be detected as a
change and propagated to the server during the next synchro-
nization process.

• Synchronization of objects is not possible, instead tables are
synchronized. The records in a table can be restricted using
Select-Statements. These statements would be very exten-
sive, because there is no need to download all two million
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addresses but only those connected to a person, a contact per-
son, a company or other objects the user selects in his down-
load list, which likely will result in approximately 600.000
addresses. The list of IDs in the Select-Statement will never-
theless be quite large.

• Restriction of the data amount is only possible on the server
but not on the client. A partial upload from the client to the
server which offers better performance on the one hand, and
allows to synchronize data with insert-once restriction on the
server on the other hand, is not possible with one Sync Agent.
However, using different Sync Agents leads to other prob-
lems including rollbacks. Normally, rollback of transactions
is supported in an efficient manner, but not possible when
using different Sync Agents.

• The last issue is that the code is not available, as it would be
in SCOAB or a custom-implemented approach. Therefore,
the code cannot be extended and necessary changes cannot
be implemented.

7. LESSONS LEARNED
In this project lessons were learned regarding workflow manage-

ment [16], requirements engineering [17] as well as regarding
synchronization. There is a huge number of different approaches
for synchronization and it is difficult to decide. Evaluation takes
some time and sooner or later a decision has to be made. SCOAB
and SyncServices were the main but not the only evaluated tech-
nologies, however no technology fitted and an own approach had to
be implemented. Building an own synchronization solution is not
as easy as it first seems. Synchronization is something that should
work in the background and not bother the user until it is really nec-
essary; nevertheless, synchronization is a main component of every
online/offline application and is quite complex. Every possible sce-
nario can and will happen, e.g. conflict during conflict resolution.
However, implementing an own synchronization approach is pos-
sible.

Another important lesson is that also if a synchronization ap-
proach does not necessarily need two databases from the same ven-
dor or a similar data model, it is always an advantage to do so. If it
is possible to have data in the same structure, schema mapping can
be avoided, thereby reducing complexity and effort.

The last important lesson learned is that a local database has
limits compared to the server database. Knowing that an offline
database is available may tempt to think that it would also be nice to
have more and more data offline. However, an offline database has
a size limit and besides the synchronization process should be kept
simple and fast, so it is highly advisable to download only what is
really necessary and helpful, and if some data are only needed for
information porposes, they should be made read-only in order to
reduce the possibility of conflicts.
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ABSTRACT
Nowadays, the efficient integration of preference querying into stan-
dard database technology is an important issue. In some instances,
preference queries challenge traditional query processing and op-
timization. In this paper we study preference database queries in-
volving hard constraints over multiple attributes belonging to sev-
eral relations. The main bottleneck for such queries is the compu-
tation of the cartesian product which may lead to high memory and
computation costs. We develop algebraic optimization techniques
to transform a preference query with hard constraints in order to en-
able its efficient processing by database engines. For this purpose,
we show a dominance criterion and we introduce rewriting tech-
niques to eliminate dominated tuples before building the cartesian
product and therefore speed up the evaluation. These techniques
lead to novel preference transformation laws and extend previous
developed rules.

1. INTRODUCTION
Preferences are ubiquitous in everyday private and business life.

They recently have received increased attention in the scope of per-
sonalized applications. In many cases they are designed for use in
database search engines and e-commerce applications (e.g. [4, 7,
16]). In some instances, preference queries challenge traditional
query processing and optimization, as illustrated by the following
example.

EXAMPLE 1. Consider a database storing nutritional informa-
tion for single servings of different kinds of food relations like Soups,
Meats and Beverages. A user, Mrs. Diet, wants to complete her diet
sheet and therefore is interested in finding meals that satisfy nutri-
tional requirements such as a restriction on the number of calories
(cal), the amount of Vitamin C (Vc) and the amount of total lipid
fat (abbr. fat). For example, the recommendations for a 30-year
old female, who is moderately active, are at most 1100 calories,
at least 38mg of Vitamin C and maximal 9g of fat for a main meal
[24].

However, in the context of a diet, each user has preferences con-
cerning its meals. Mrs. Diet for example likes chicken soup as
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starter. The main course should be beef and the cholesterol of the
beef should be as little as possible. For beverage she likes red wine.
These preferences are equally important for her (a Pareto prefer-
ence). The complete meal must fulfill the restrictions of maximal
1100 calories, at least 38g of vitamin C and at most 9g fat for her
personalized diet sheet.

Mrs. Diet wants find all such meals which fulfill the hard con-
straints and satisfy her preferences best possible.

Using Kießling’s approach of modelling preferences as strict
partial orders [13, 14], the above mentioned hard and soft con-
straints can be expressed by Preference SQL [16] as follows:

SELECT S.name, M.name, B.name
FROM Soups S, Meats M, Beverages B
WHERE S.cal + M.cal + B.cal ≤ 1100

AND S.Vc + M.Vc + B.Vc ≥ 38
AND S.fat + M.fat + B.fat ≤ 9

PREFERRING
S.name IN (’Chicken soup’) AND

(M.name IN (’Beef’)
AND M.Cholesterol LOWEST) AND

B.name IN (’Red wine’)

This query expresses Mrs. Diet’s preferences after the keyword
PREFERRING. It is a Pareto preference (AND) 1 consisting of pref-
erences on soups, meats and beverages. IN denotes a preference
for members of a given set, a POS-preference. The whole prefer-
ence is evaluated on the result of the hard sum constraints.

The query in the example is a preference query containing mul-
tiple sum constraints in its condition and user preferences on some
attributes. Therefore, we call such queries Preference Queries
with Multiple Constraints.

Of course, those problems are not limited to planning tasks as
in the example above. They also occur in the context of document
retrieval [12, 8], multimedia data retrieval [6], geographic informa-
tion systems [9], dynamic resource allocation on the grid [18] and
e-commerce [22, 4].

Conventional approaches implement such queries by a set of bi-
nary join operators and evaluate the hard constraints. Afterwards
the user preferences as soft selection combined with the Pareto op-
erator (AND, ⊗) are evaluated by a skyline algorithm, e.g. [2, 21,
20], to retrieve all combinations that fulfill the preferences best pos-
sible.

Because the hard constraints refer to attributes from more than
two relations, pair-wise join operators may fail to remove interme-
diate results based on these condition. For a hard constraint such
1Note that AND in the WHERE-clause means Boolean conjunction,
whereas AND in the PREFERRING-clause denotes Pareto prefer-
ence construction, i.e. all preferences are equally important.
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as A1 + ... + Ar Θ c, Θ ∈ {<, >,≤,≥, =, 6=} and c a constant,
current join operators cannot test the satisfiability of an intermedi-
ate tuple until all variables have been determined. A consequence
of this inability to remove intermediate tuples that will not lead to
any results is that the query evaluation process must evaluate the
cartesian product of all tuples of all join relations, which leads to
high memory and computation costs, particularly if the relations
are large.

The goal of this paper is to eliminate tuples from the relations
which definitely can never be in the result set before building the
cartesian product. This reduces the relation sizes and therefore the
computation costs and needed memory for the cartesian product.

Section 4.1 of this paper is an extension of [5], where we only
considered one single sum constraint over multiple attributes. But
in real life, database queries are not restricted to only one hard con-
straint, but use several different constraints, e.g. as in example 1.
Therefore, we must consider multiple hard constraints over mul-
tiple attributes and for such problems we present novel rewriting
techniques in this paper. Further on, we present optimization tech-
niques based on mathematical rewriting of the original constraints
and add additional selection operators into the Preference SQL
query, cp. section 4.2.

The rest of this paper is organized as follows: In the next sec-
tion we take a look at related work. Afterwards we describe the
background of our preference model in section 3. In section 4
we develop different optimization techniques and introduce new
rewriting techniques for preference queries. Further on, we present
experimental results in section 5, and finally we conclude with a
summary and outlook.

2. RELATED WORK
Database queries with constraints over attributes belonging to

several relations occur frequently in the real world, but have not
been intensively researched in the database context in the past.

Agarwal et. al. [1] address queries with linear constraints, and
Guha et. al. [10] address queries with aggregation constraints.
However, their work is only valid for queries on one relation.

Ilyas et. al. [12] developed algorithms for top-k queries that can
be extended to implement queries with a constraint on the value
of a monotone function, but this is only valid for one constraint.
Liu, Yang and Foster [17] integrated constraint-programming tech-
niques with traditional database techniques to solve sum constraint
queries by modifiying existing nested loop-join operators. Nestorov,
Liu and Foster [19] use similar principles but can be implemented
without modifying existing database engines, but not in combina-
tion with preferences.

Georgiadis et. al. [8] prevent the construction of tuples that can-
not appear in the result of a preference query using appropriate lin-
earizations, but not in combination with hard constraints.

Hafenrichter [11] and Chomicki [3] developed extensive trans-
formation laws and rewriting techniques for various preference quer-
ies, e.g. ’push preference over hard constraint’, but these laws are
not applicable for the processing of preference queries with hard
constraints over multiple attributes belonging to more than one re-
lation.

Döring et. al. [4] present a first approach for processing of
queries dealing with individual and global preferences of customers.
Their preference query rewriting is a kind of query expansion to
deliver all tuples that matches the original preferences of a user as
well as cheaper alternatives in an online travel booking system.

In [5] we developed transformation laws to optimize preference
queries with one sum constraint over a set of attributes belonging
to several relations. But these laws are only valid for one constraint.

In this paper we develop laws for multiple constraints and intro-
duce further optimization techniques. Further on, we show how to
integrate our new laws into the preference query optimizer imple-
mented by Hafenrichter [11].

Note that our approach does not intend to replace other optimiza-
tion methods. Instead, our method can be combined with other al-
gorithms to allow more Optimization of Preference Queries with
Multiple Constraints on relational database systems.

3. PREFERENCE ALGEBRA
In this section we want to give some background concerning the

preference technology.

3.1 Preference Algebra
Preference frameworks tailored to standard database systems have

been introduced in [13] and [3]. We depict the preference alge-
bra from [13] which is a direct mapping to relational algebra and
declarative query languages. This preference model is based on
strict partial orders and is semantically rich, easy to handle and
very flexible to represent user preferences which are ubiquitous in
our life.

DEFINITION 1. Preference
Let A = {A1, . . . , An} be a set of attribute names with corre-
sponding domains of values dom(Ai). The domain of A is defined
as dom(A) = dom(A1)× · · · × dom(An). Then a preference P
is a strict partial order P = (A, <P ), where <P ⊆ dom(A) ×
dom(A).

The term x <P y is interpreted as ”I like y more than x”.

Having defined preferences as strict partial orders we provide a
variety of intuitive and customizable base preference construc-
tors for categorical and numerical domains which can intuitively
be combined to build complex preferences still yielding partial or-
ders. Formally, a base preference constructor has one or more ar-
guments, the first characterizing the attributes A and the others the
strict partial order <P , referring to A.

For example, the POS-preference POS(A, <P ) on an attribute
A expresses that a special value of an attribute is preferred to all
others (compare the IN-clause in example 1). There is also a NEG
preference constructor, which is defined analogous to the POS-
preference, but with a NEG-set. Moreover, it is possible to combine
these preferences to POS/NEG or POS/POS.

If we want to focus on preferences where the domain is a numeri-
cal data type, e.g. decimal, which can be infinite, we can use a num-
ber of numerical preference constructors which are defined by [13],
e.g. LOWEST, HIGHEST, AROUND, BETWEEN and the SCORE
preference. LOWEST(cholesterol), for example, represents that a
person prefers lower values for ’cholesterol’ over higher values.

DEFINITION 2. Extremal preferences
We define the LOWEST and HIGHEST preference that the desired
value should be as low (high) as possible. Formally:

• P is called a LOWEST preference, if: x <P y iff x > y

• P is called a HIGHEST preference, if: x <P y iff x < y

There are further categorical and numerical base preference con-
structors. Detailed information on these preference constructors are
given in [13].

In the following we will briefly discuss two complex preference
constructors, namely the Pareto preference (AND, ⊗) and the Pri-
oritization (PRIOR TO, &).
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DEFINITION 3. Pareto preference: P1 ⊗ P2

Given two preferences P1 = (A, <P1) and P2 = (B, <P2), for
x, y ∈ dom(A)× dom(B) we define

x <P1⊗P2 y iff

(x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨
(x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1))

P = (A ∪ B, <P1⊗P2) is called Pareto preference modelling
P1 and P2 as equally important.

DEFINITION 4. Prioritized preference: P1 & P2

Given two preferences P1 = (A, <P1) and P2 = (B, <P2), for
x, y ∈ dom(A)× dom(B) we define

x <P1&P2 y iff

x1 <P1 y1 ∨ (x1 = y1 ∧ x2 <P2 y2)

P1 is considered more important than P2; P2 is respected only
where P1 does not mind.

A generalization of the Pareto preference constructor and the Pri-
oritization to more than two preferences is obvious. An extended
definition can be found in [21, 20]. Detailed information on all
preference constructors are given in [13].

EXAMPLE 2. As in example 1, beef and cholesterol as little as
possible are equally important for Mrs. Diet. With preference alge-
bra we describe her preferences as:

P = POS(Meats, {Beef}) ⊗ LOWEST (cholesterol)

3.2 The BMO Query Model
Given preferences over a set of attributes a central question is

to determine an outcome that is preferentially optimal with respect
to the preference statements. Whether preferences can be satisfied
depends on the current database contents. Thus a match-making
between wishes and data has to be made.

For this purpose the Best-Matches-Only (BMO) query model
has been proposed by [13].

DEFINITION 5. BMO-Set
The Best-Matches-Only result set contains only the best matches
w.r.t the strict partial order of a preference P . It is a selection of
unordered result tuples where all tuples in the BMO-set are undom-
inated by others regarding the preference P .

In principle, efficient BMO query evaluation requires two new
relational operators. We define

σ[P ](R) := {t ∈ R | ¬∃t′ ∈ R : t[A] <P t′[A]}
as preference selection. It finds all best matching tuples t for a
preference P = (A, <P ) with A ⊆ attr(R)2. If none exists, it
delivers best-matching alternatives, but nothing worse.

A preference can also be evaluated in grouped mode, given some
B ⊆ attr(R). This can be expressed as the grouped preference
selection

σ[P groupby B](R) :=

{t ∈ R | ¬∃t′ ∈ R : t[A] <P t′[A] ∧ t[B] = t′[B]} .

σ[P ](R) and σ[P groupby B](R) can perform the match-making
process as required by BMO semantics.
2We use attr(R) to denote all attributes of a relation R

4. OPTIMIZATION TECHNIQUES
[11, 15] and [3] laid the foundations of a framework for prefer-

ence query optimization that extends established query optimiza-
tion techniques from relational databases. They presented a variety
of new laws for preference relational algebra to optimize preference
queries.

The first key to our algebraic optimization is a dominance cri-
terion, which allows us to neglect dominated tuples which do not
satisfy the user’s preferences, before evaluating the cartesian prod-
uct. The second optimization are additional selection operators
which can be retrieved from the hard constraints and even applied
before building the cartesian product. This speeds-up evaluation
and reduces memory and computation costs.

4.1 Dominance Criterion
In [5] we introduced a dominance criterion to optimize Prefer-

ence SUM-constraint queries, but this criterion is only valid for a
single sum constraint in the query. Now we consider more complex
hard constraints (e.g. calories, vitamin C and fat in example 1) and
therefore we have to modify this dominance criterion given in [5].
But the dominance criterion is not restricted to sum constraints, it
is also valid for multiplication, or, generally for each monotone
function. Before we give the extended definition of the dominance
criterion, we define the class of preference queries our approach
can handle.

DEFINITION 6. Preference Query with Multiple Constraints
We define a Preference Query with Multiple Constraints as 3

Q := σ[P1 Φ1... Φr Pr] σF (R1 × ...×Rr)

where

F := F1 ∧ ... ∧ Fr

are multiple constraints with

Fk =

rX
i=1

ρi ·Aij Θk ck, j = 1, ..., ni ,

a SUM-constraint or

Fk =

rY
i=1

ρi ·Aij Θk ck, j = 1, ..., ni ,

a Multiplication-constraint with

• Pi = (Bi, <Pi) arbitrary preferences

• Φi ∈ {⊗, &}, i = 1, ..., r a Pareto or Prioritization oper-
ator (cp. section 3)

• Ri(Ai1 , ..., Aini
, Bi), i = 1, ..., r database relations, where

ni is the number of numerical attributes in relation Ri

• Aij positive numerical attributes

• ρi ∈ R+
0 , i = 1, ..., r a numerical multiplicator

• Θk ∈ {<,≤, >,≥, =, 6=},

• ck ∈ R+
0 a constant

3σ[P ] means preference selection, i.e. a soft constraint, whereas
σF denotes a classical relational algebra selection, i.e. a hard con-
straint.
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Note: The definition can also be extended to queries with join
conditions, see section 4.3.

Now we provide the first optimization technique for preference
queries with multiple constraints.

THEOREM 1. Extended Dominance-Criterion
Consider a query

Q := σ[P1 Φ1... Φr Pr] σF (R1 × ...×Rr)

as described in definition 6.
Let tuples t, t′ ∈ Ri such that

t[Bi] <Pi t′[Bi] ∧ t[Ai1 ] Θ̂1 t′[Ai1 ] ∧
... ∧

t[Air ] Θ̂r t′[Air ] (∗)

and Θ̂j , j = 1, ..., r defined as

Θ̂j :=

8
<
:
≥ iff Θj ∈ {≤, <}
≤ iff Θj ∈ {≥, >}
= iff Θj ∈ {=, 6=}

Then an optimal solution exists for our Preference Query with Mul-
tiple Constraints Q without the tuple t ∈ Ri, i.e. using the dom-
inance criterion (∗) for each relation, Q leads to a correct and
complete solution.

PROOF. Let w := (t1, ..., t, ..., tr) and v := (t1, ..., t
′, ..., tr)

two tuples in R := R1× ...×Rr which only differ in t and t′ with
t, t′ ∈ Ri and

t[Bi] <Pi t′[Bi] ∧ t[Ai1 ] Θ̂1 t′[Ai1 ] ∧
... ∧

t[Air ] Θ̂r t′[Air ]

Then, it is evident that:

1) if one of the hard constraints Fk in F fails for v, also the hard
constraint fails for w, since t[Ai] Θ̂j t′[Ai] (we only consider
monotone functions). Therefore w is not an element of the
solution.

2) if v fulfills all hard constraints, then

a) if w fails one hard constraint in F , then w is not an element
of the solution.

b) if w also fulfills all hard constraints in F , then we know
t[Bi] <Pi t′[Bi], i.e. tuple t′ is preferred to t.
Now, it follows from the preference P := P1 Φ1... Φr Pr

that v is preferred over w since t′ is preferred w.r.t Pi and all
others are equal.

Remarks: With the SUM-constraints respectively the Multipli-
cation-constraints Fk in definition 6 we specified a wide range of
monotone arithmetic functions possible in a SELECTION clause of
a Preference SQL query. However, the dominance criterion is valid
for all monotone functions, since the proof only refers to mono-
tone functions and the given preferences.

We will give a short example for the extended dominance crite-
rion.

EXAMPLE 3. Revisit example 1 with Mrs. Diet’s hard con-
straints. For her query we have three SUM-constraints with maxi-
mal 1100 kcal (Θ1 is ≤), at least 38g of Vitamin C (Θ2 is ≥) and
maximal 9g fat (Θ3 is ≤). Further on, she prefers chicken soup.
Table 1 represents a simple soup relation.

Table 1: Example for the dominance criterion
Soups ID Name Cal Vc Fat

S1 Vegetable 59 12 1
S2 Chicken 110 2 4
S3 Chicken 198 9 2
S4 Noodle 453 1 17

Since ’S4’ has more calories than ’S3’ (Θ̂1 is≥), less Vitamin C
than ’S3’ (Θ̂2 is≤), more fat than ’S3’ (Θ̂3 is≥) and ’S4’ is worse
than ’S3’ concerning the soup preference, tuple ’S4’ is dominated,
i.e. we have not to consider ’S4’ in the cartesian product and the
hard selection. In the preference evaluation tuple ’S4’ is unimpor-
tant, since ’S2’ and ’S3’ are preferred, even if the combination with
’S4’ would fulill all hard constraints. This results in the undomi-
nated tuples of {’S1’,’S2’,’S3’}. Tuple ’S3’ is not worse than ’S2’
with regard to the preference. Tuple ’S1’ is worse than ’S2’ and
’S3’ concerning the same preference, but maybe ’S2’ and ’S3’ do
not fulfill the hard constraints (’S1’ has less calories, higher vita-
min C and less fat). So we must take into account tuple ’S1’.

As shown in the example, the dominance criterion from theorem
1 allows us to eliminate tuples from the relations before building the
cartesian product. This reduces relation sizes and therfore speeds-
up the computation.

For evaluation of the dominance criterion we use the BMO query
model and apply the so called CUTOFF preference constructor,
also see [5]. Since we extended the definition of the dominance
criterion, we also have to change the CUTOFF constructor for a
valid BMO evaluation.

DEFINITION 7. CUTOFF Preference Constructor
Given a preference P = (B, <P ) on a relation R(A1, ..., An, B)
with tuples x = (x1, ..., xn, xB), y = (y1, ..., yn, yB) in a Pref-
erence Query with Multiple Constraints (cp. definition 6).
Then Pc := CUTOFF (P ), if:

x <Pc y iff xB <P yB ∧ x1 Θ̂1 y1

∧ ...

xn Θ̂n yn

where

Θ̂j :=

8
<
:
≥ iff Θj ∈ {≤, <} j = 1, ..., n
≤ iff Θj ∈ {≥, >} j = 1, ..., n
= iff Θj ∈ {=, 6=} j = 1, ..., n

Tuple x is worse than y concerning the CUTOFF-preference Pc,
if yB is better than xB regarding the given preference P (the pref-
erence specified by the user) and all comparison operators Θ̂j are
evaluated to true.

The evaluation of the dominance criterion by the CUTOFF con-
structor makes the computation of Preference Queries with Multi-
ple Constraints evident: Our Preference SQL engine [16] applies
the CUTOFF preference independently on each stream of tuples.
Afterwards it performs the cartesian product (checking the hard
sum constraint) and finally evaluates the preference selection by
a skyline algorithm [2, 21, 20], also cp. section 4.3.
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4.2 Selection Operators
In this section we add hard selection constraints to the original

Preference SQL query to filter tuples before building the cartesian
product. The basic idea was developed by [19] and is now adapted
to preference queries with multiple constraints. For this, each con-
straint in the query condition is rewritten as a set of simpler con-
straints and an additional hard selection operator is applied on
each relation.

4.2.1 Selection Operator for SUM-Constraints
Consider a sum constraint like

ρ1A1 + ... + ρrAr Θ c (∗∗)

with c a constant, Θ ∈ {<, >,≤,≥} and ρk ∈ R+. Obviously

ρiAi Θ c−
rX

k=1,k 6=i

ρkAk for i = 1, ..., r

From this expression we can calculate the lower (lbi) and upper
(ubi) bounds of it as follows:

lbi = c−
rX

k=1,k 6=i

max(ρkAk) for i = 1, ..., r

ubi = c−
rX

k=1,k 6=i

min(ρkAk) for i = 1, ..., r

Using lbi and ubi it is possible to create additional constraints for
attribute Ai depending on Θ ∈ {<, >,≤,≥}. If Θ ∈ {<,≤} we
call such constraints maximum sum constraints and derive

Ai Θ<,≤
ubi

ρi
.

For Θ ∈ {>,≥} we call such constraints minimum sum con-
straints and derive the following additional constraint for Ai:

Ai Θ>,≥
lbi

ρi
.

Any value which does not fulfill the additional constraint can not
satisfy the sum constraint shown in (∗∗). Through these additional
hard constraints we can filter out tuples from the relations that will
not lead to any query result due to the hard constraints before build-
ing the cartesian product.

EXAMPLE 4. Consider the example database in table 2 and
Mrs. Diet’s preference query

SELECT S.name, M.name, B.name
FROM Soups S, Meats M, Beverages B
WHERE S.cal + M.cal + B.cal ≤ 1100

AND S.Vc + M.Vc + B.Vc ≥ 38
AND S.fat + M.fat + B.fat ≤ 9

PREFERRING
S.name IN (’Chicken soup’) AND

(M.name IN (’Beef’)
AND M.Cholesterol LOWEST) AND

B.name IN (’Red wine’)
For the hard constraint of 1100 kcal we can express the following
upper bounds and therefore maximum constraints:

• min(M.Cal) + min(B.Cal) = 903 ⇒ S.Cal ≤ 197

• min(S.Cal) + min(B.Cal) = 144 ⇒ M.Cal ≤ 956

• min(S.Cal) + min(M.Cal) = 877 ⇒ B.Cal ≤ 223

Table 2: Example database
Soups ID Name Cal Vc Fat

S1 Vegetable 59 12 1
S.V c < 3 S2 Chicken 110 2 4
S.Cal > 197 S3 Chicken 198 9 2
DC, S.Cal > 197 S4 Noodle 453 1 17

Meats ID Name Cal Vc Fat Cholesterol
M1 Turkey 818 13 8 6
M2 Beef 857 14 6 4

DC M3 Pork 911 12 12 15

Beverages ID Name Cal Vc Fat
B.V c < 12 B1 Red Wine 85 1 0

B2 Red Wine 181 14 0
B3 Coke 220 21 2

B.Cal > 223 B4 Lemonade 281 17 2
B.Cal > 223 B5 Red Wine 400 4 0

This means, there only exists a solution for the hard sum con-
straint with tuples in the soup relation with S.Cal ≤ 197. Tuples
with S.Cal > 197 ({S3, S4}) can be eliminated from the relation
(take not part in the cartesian product) since there is no combina-
tion with less than 1100 kcal possible. The same with beverages.
In the meats relation all tuples have M.Cal ≤ 956 and therefore
none can be eliminated by additional selection operators. But tuple
’M3’ is dominated due to the dominance criterion (theorem 1), see
table 2. For the hard constraint of 38 g of Vitamin C it follows:
S.V c ≥ 3, M.V c ≥ 5 and B.V c ≥ 12. We can dominate tuple
’S2’ (S.V c = 2 and it should be S.V c ≥ 3), and tuple ’B1’. For
the fat constraint there are no valid additional selection operators.

Considering this simple database we reduced the cartesian prod-
uct from 60 possible combinations to 4 combinations. Afterwards
it is possible to check all hard constraints and thereafter apply a
skyline algorithm to evalute the user preference on the remaining
combinations which leads to the result {S1, M2, B2}.

4.2.2 Selection Operator for Multiplication Constraints
We can also introduce selection operators for multiplication con-

straints. This is analogous to the SUM constraints. Consider

ρ1A1 · ... · ρrAr Θ c (∗ ∗ ∗)

with c a constant, Θ ∈ {<, >,≤,≥} and ρk ∈ R+. We again
calculate the lower (lbi) and upper (ubi) bounds of it as follows:

lbi = c ·
0
@

rY

k=1,k 6=i

max(ρkAk)

1
A
−1

for i = 1, ..., r

ubi = c ·
0
@

rY

k=1,k 6=i

min(ρkAk)

1
A
−1

for i = 1, ..., r

We get the maximum multiplication constraint for Θ ∈ {<,≤}

Ai Θ<,≤
ubi

ρi

and the minimum multiplication constraint for Θ ∈ {>,≥}

Ai Θ>,≥
lbi

ρi
.

Depending on the constraints we can eliminate tuples from the
relations to speed-up evaluation.
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4.3 Rewriting Technique
Hafenrichter and Kießling [11, 15] constructed a preference query

optimizer as an extension of an existing SQL optimizer, adding new
heuristics like ’push preference’. This query optimizer is based on
a classical Hill-Climbing algorithm given by Ullmann [23]. With
the preparatory work from section 4 we can develop transforma-
tion laws for preference relational algebra that allow us to eliminate
dominated tuples before building the cartesian product by inserting
the CUTOFF preference and the additional selection operators into
the query.

We intergrated our novel rewriting techniques - the dominance
criterion (section 4.1) and the additional selection operators (4.2) -
into this preference query optimizer.

For this, we refer to the notation introduced in section 4, this
means, we skip some formal definitions and keep it short and clearly
arranged. We abbreviate the use of the CUTOFF(P) constructor
for a preference P with Pc and the selection operators with SO.
Since figures are more meaningful than sentences, we demonstrate
the rewriting technique using an operator tree.

With the help of Pc and the selection operators SO we can trans-
form a Preference Query with Multiple Constraints into an opti-
mized query as follows:

i) Determine the lower respectively upper bounds (abbr. bi) for
each constraint. Insert the corresponding selection operators
σAi Θi bi into the query tree.

ii) Apply the CUTOFF preference constructor Pc to the result of
the selection operator.

iii) Build cartesian product and check the constraints F1 ∧ ...∧Fr .

iv) Evaluate the preference selection P1 Φ1... Φr Pr by a skyline
algorithm 4.

Formal:

COROLLARY 1. Insert Pc and SO into Cartesian Product
Consider a preference query

Q := σ[P1 Φ1... Φr Pr] σF (R1 × ...×Rr)

where F := F1 ∧ ... ∧ Fr and

• Pi = (Bi, <Pi) arbitrary preferences

• Φi ∈ {⊗, &}, i = 1, ..., r a Pareto or Prioritization oper-
ator (cp. section 3)

• Ri(Ai1 , ..., Aini
, Bi), i = 1, ..., r database relations, where

ni is the number of numerical attributes in relation Ri

• Aij positive numerical attributes

• Fk =
Pr

i=1 ρi ·Aij Θk ck SUM-constraints or

• Fk =
Qr

i=1 ρi ·Aij Θk ck Multiplication-constraints

• ρi ∈ R+
0 , i = 1, ..., r a numerical multiplicator

• Θk ∈ {<,≤, >,≥, =, 6=}, and ck ∈ R+
0 a constant

• bi the lower respectively upper bounds (cp. section 4.2) for
the selection operators (only valid, if Θk ∈ {<,≤, >,≥})

Than we can transform the query Q into the following optimized
operator tree, see figure 1:
4Since a skyline algorithm [2, 21, 20] only can handle Pareto pref-
erences, for Prioritization an algorithm developed by [11] can be
applied.

σ[P1 Φ1... Φr Pr]

²²
σF1∧...∧Fr

²²
×

wwoooooooooo

''OOOOOOOO

...

yyttt
ttt

tt

''OOOOOOOOOO σ[Prc ]

²²
×

¡¡¢¢
¢¢

%%JJJJJJ ... σAr Θr br

²²
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ÀÀ;
;;

; σ[P3c ]
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²²
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²²
σA1 Θ1 b1

²²

σA2 Θ2 b2

²²

R3

R1 R2

Figure 1: Optimized Preference Query

PROOF. The proof is given by theorem 1.

Remarks:

• It is allowed to change CUTOFF and the additional hard se-
lection operator in the Hill-Climbing algorithm. However,
applying hard selection first reduces computation costs for
evaluating CUTOFF.

• In the case of joins like R1 1R1.X=R2.X R2 we have to en-
sure that we do not eliminate join partners, i.e. for each tuple
in the first relation there must exist a join partner in the sec-
ond relation. To get rid of this problem we have to evaluate
the CUTOFF preference as a grouped preference selection,
see section 3.2, [5] and [11]. Therefore, the CUTOFF pref-
erence is only evaluated for tuples in the same equivalence
class, i.e. grouped by X .

5. EXPERIMENTAL RESULTS
In order to evaluate our rewriting techniques, we performed sev-

eral experiments. For this we intergrated our rewriting techniques
into the preference query optimizer developed by Hafenrichter [11],
also cp. section 4.3. We used a real-world food database published
by the USDA [24]. This database contains nutritional facts for more
than 7000 types of food. From this database we created three rela-
tions as in example 1: Soups, Meats and Beverages containing in-
formation about their eponymous types of food. The sizes of these
relations are as follows: There are 500 soups, 700 meats and 250
beverages available, i.e. about 87.500.000 possible combinations.

We run all test queries on an Oracle 10.0 database system in
combination with the preference query optimizer described in [11]
(Java implementation). The system is running on a Linux machine
(Intel Dual Core CPU 1.6 GHz, 2GB main memory).

We evaluated the efficiency of our rewriting techniques intro-
duced in section 4 by comparing the response times of several Pref-
erence Queries with Multiple Constraints. Due to limited space
we only report a few results, with representative performance, shown
below. In our result figures, we abbreviate the standard approach
(full cartesian product) with no rewriting. Using the dominance
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criterion from section 4.1 we write DC, using the selection oper-
ators from section 4.2 we write SO and for the evaluation of the
dominance criterion in combination with the selection operators we
write DC+SO.

The test query is based on example 1 and contains three con-
straints. For representation we only varied the amount of calories
cal, which must be less or equal than a value called max cal. The
amount of vitamin C (Vc) and the fat value (fat) we fixed to the
values given in example 1. This leads to the query

SELECT S.name, M.name, B.name
FROM Soups S, Meats M, Beverages B
WHERE S.cal + M.cal + B.cal ≤ max cal

AND S.Vc + M.Vc + B.Vc ≥ 38
AND S.fat + M.fat + B.fat ≤ 9

PREFERRING
S.name IN (’Chicken soup’) AND

(M.name IN (’Beef’)
AND M.Cholesterol LOWEST) AND

B.name IN (’Red wine’)

Notice, varying the parameter max cal varies the selectivity of
the query, while varying the size of the relations changes the size
of the problem to be solved. Therefore, we varied the required sum
constraints in order to change the selectivity and we varied the size
of the relations.

In our first test series we only varied the max cal value in a range
from 600 to 1700 calories, see figure 2.
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Figure 2: Performance results for different max cal.

Since the dominance criterion only depends on the preferences
and not on the hard constraints, the response time for the preference
query with different max cal is nearly constant for each approach.
Using the selection operators (SO), the query response time is better
than the standard approach (no rewriting), since some tuples can be
eliminated before building the cartesian product. Using the dom-
inance criterion (DC) or the combination (DC+SO), the response
time of the query is about 2 seconds, as can be seen in figure 3,
which is a zoomed figure of figure 2.

In all our tests with varied cal, Vc and fat it performed out, that
DC+SO performs best for all, but is only a little bit better than DC
alone. The reason is the worse evaluation of the additional selec-
tion operators for our real-world data from the USDA, since there
are many tuples with a NULL or 0 (zero) entry in the correspond-
ing attribute. For data with no or less NULLs and 0 entries the
additional selection operators should perform much better.

Next, we run the query above with different relation sizes (but
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Figure 3: Comparision of DC and DC+SO.

fixed max cal = 1100) and demonstrate the performance results in
figure 4.
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Figure 4: Performance results for different relations sizes.

As above, DC and DC+SO performs extremly good and for a
comparison of these two, we show again a zoomed figure from the
one above, see figure 5. The difference between DC and DC+SO
is marginal, because of the reason given above (NULL entries).
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Figure 5: Comparision of DC and DC+SO.

PersDB 2008  --  page 34 of 58



Obviously our rewriting techniques speeds-up the evaluation be-
cause of writing in the CUTOFF preference and the additional se-
lection operators into the query. The combination DC+SO is bet-
ter than all other approaches, but the difference between DC and
DC+SO is not very large.

From the experimental results of our benchmark queries, we can
see that our proposed rewriting techniques improve the query per-
formance consistently for different types of sum constraint queries.

6. SUMMARY AND OUTLOOK
Finding efficient query optimization techniques for Preference

Queries with Multiple Constraints is beneficial for a variety of prac-
tical database applications, e.g. in planning tasks or tourism. In
this paper we extended our dominance criterion to work with mul-
tiple hard constraints like sum or multiplication constraints. The
dominance criterion as well as the insertion of additional selec-
tion operators based on mathematical observations eliminate tuples
from relations before building the cartesian product and therefore
reduces memory and computation costs, i.e. speeds-up the eval-
uation of Preference Queries with Multiple Constraints. The per-
formance speed-ups observed so far give already strong evidence
that a tightly coupled implementation inside an existing SQL query
engine can achieve excellent performance.

For future work we want to develop a cost-based optimization
for Pareto preference and Prioritization queries with multiple con-
straints. We want to develop algorithms which completly avoid the
cartesian product. For this we developed a first approach which
seems to be good. However, this is much more complex and needs
more attention and deeper research.
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ABSTRACT
User experience while searching for web pages on the move
can be far from satisfactory due to the inherent limitations
of the input modes available in mobile devices. On the other
hand, end-users can benefit from the availability of context-
aware information anywhere, anytime. To overcome the us-
ability problem and exploit context information at the same
time, we propose a thesaurus-based semantic context-aware
autocompletion mechanism. Our system can help the user
in completing the desired query terms avoiding manual typ-
ing. In addition we are capable of filtering out non-relevant
query terms for the Context in which the search process
is conducted. Our context-aware proposal is based on a
model which represents formally all the information about
the user circumstances, the access mechanism (device and
web browser) and the surrounding environment. Our evalu-
ation reveals that users can find new relevant context-aware
results with less effort.

1. INTRODUCTION
Mobile devices have evolved to provide bigger full-color

screens, enhanced processing power and faster and perma-
nent broadband Internet connections. These technologies
have brought the World Wide Web to mobile devices in-
troducing new requirements and expectations. Nonetheless,
the vast majority of web sites and search engines are usually
designed with desktop computers in mind. For that reason,
current mobile search experience is far from satisfactory [17].
Search engine analysts, being aware of this problem, have
designed mobile-oriented views to provide the same service
from a smaller interface. Content transformation (reformat-
ting) proxies have been devised to reduce pages on the fly [8],
making them more accessible for the mobile web. Such ap-
proach deals with one of the major limitations of the mobile
web, screen size, but it does not address the problem of
the limited input modes. Furthermore, it does not take ad-
vantage of the contextual information available in a mobile
environment in order to provide more accurate results.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
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or to redistribute to lists, requires a fee and/or special permission from the
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Deficient handset’s input modes are one of the most im-
portant limitations when using a mobile search engine. Ac-
cording to recent studies [9], users need an average of 40
key-presses with a 12-key keypad, and about 40 seconds to
enter a query with a cell phone. That is a too big effort, users
get easily tired and sometimes even give up. This leads to
the mismatched query problem [5], mobile queries become
even shorter and more ambiguous than the same queries in
a desktop environment. The immediate consequence is that
they do not reflect user’s intentions precisely, hence the ob-
tained results are poor. Ultimately the user is forced to visit
a big number of useless web sites and to navigate through
several result sets in order to find the needed information.
This search flow might be acceptable when surfing the web
from a desktop computer, but it becomes an extremely ar-
duous task when performed from a mobile device.

Mobile Web Search introduces new challenges not present
in traditional web search. Users normally own modern cell
phones which allows them to be permanently online any-
where, anytime. A typical mobile web search scenario con-
sists of a user outdoors with an information need. At this
point he takes his phone and uses a web search engine to
find an answer to a query. Furthermore, he is probably do-
ing something else at the same time, like walking or talking
to a friend. In such situation the user needs a short, fast
but also accurate answer to his query.

Autocompletion mechanisms appear as a natural improve-
ment to the limited input modes problem. In fact, any mod-
ern information retrieval system can obtain the most pop-
ular query terms or phrases from indexed pages. Such ele-
ments can be used to interactively complete user’s queries.
An autocompletion engine can be helpful both by saving
typing time and by finding new, serendipitous terms. How-
ever a pure syntactic approach can present difficulties, be-
cause it will be based on the coincidence of string represen-
tations (words), but not in concepts and their relationships.
The corollary is that, the autocompletion mechanism will
be helpful if the user intends to use the same word that
the system is expecting, but if, for instance, a synonym is
in user’s mind, the system will be unable to recognize and
autocomplete it. The previous facts have led us to the in-
troduction of a concept-driven semantic and context-aware
autocompletion engine.

Initially, we have created a thesaurus which represents
concepts together with their synonyms and relationships.
We have modeled concepts corresponding to the domain of
services offered to the public, such as hotels, restaurants,
tourism offices, public transport stations and similar. We
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have chosen such set of concepts, as they are good candidates
to be the most likely-to-be-used query terms in a mobile en-
vironment (where the user is always looking for something
to address a very specific and punctual necessity). For ex-
ample, our thesaurus includes the concept “dinner” related
to “food”, “restaurant” and “supermarket”.

An autocompletion mechanism targeted to the mobile en-
vironment can also benefit from the availability of contextual
information. For example, there is no point in suggesting
the term “beach” while in a place which it is not on the
seaside, or during winter time. To deal with those scenar-
ios, we have extended our semantic autocompletion engine
with context-aware recommendation, which filters out non-
contextually-relevant concepts. As a result we are able to
suggest the best query terms according to each situation.
To implement such advanced features we have introduced a
formal Context Model which represents all the significative
properties about the environment (place, access mechanism,
user profile, etc.) in which the search process is conducted.

We have integrated our semantic and context-aware au-
tocompletion system into a working prototype. Such proto-
type also includes a novel user interface designed to meet all
the requirements imposed by the mobile environment. Fi-
nally, we have tested the feasibility of the system by making
a qualitative analysis of the improvement obtained in the
user experience.

The rest of this paper is organized as follows. Section 2
briefly describes the background and related work regarding
context awareness, personalization and recommender sys-
tems. The detailed description of our proposal can be found
on section 3. The evaluation and experimentation results are
detailed on section 4. Finally section 5, is devoted to sum-
marize the conclusions and the guidelines for future work.

2. BACKGROUND AND RELATED WORK
The expansion of embedded and handheld devices has pro-

moted the research on the benefit of contextual information
to improve Human-Computer Interaction, Ubiquitous Com-
puting and Web Search experience [3].

A.K.Dey [2] suggests the following general definition of
Context and context-awareness: Context is any information
that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered rel-
evant to the interaction between a user and an application,
including the user and application themselves. A system is
context-aware if it uses the Context to provide relevant in-
formation and/or services to the user, where relevancy de-
pends on the users task. According to this definition, the
Context could be considered the current data displayed on
the screen, the surrounding environment or even the whole
application. For that reason every context-aware applica-
tion must explicitly specify what information is part of the
Context. Additionally, the Context is inherently dynamic
and constantly changing. A few properties will be barely
modified over time, like user name or age, but other ones
may frequently vary, like time or position. We must ensure
that when context properties are queried they are all up to
date, or at least marked as expired [18].

The main challenge introduced by context-awareness is to
come up with a flexible and unambiguous representation of
the Context, including a framework to ease the development
of context-aware applications. Based on this Context Model,
applications can figure out which actions should be triggered

or what data is potentially relevant to the user. Nonethe-
less, the heterogeneous nature of context-aware applications
makes it impossible to have a universal, unique represen-
tation of the Context. However, a good compromise can
be achieved if context models are able to manage a set of
universal properties, useful for any application, in conjunc-
tion with application-specific, custom properties. Previous
works [18] propose a Context taxonomy and a framework
which define several abstract layers of knowledge. Such lay-
ers are ready to be mapped with the properties that actually
will model the Context. In addition, formal reasoning tech-
niques can be employed to create derived properties based
on those which are directly fetched.

Another important issue has to do with gathering all the
significative context information that can be of interest to
an application. It is noteworthy that each application will
be only interested in a limited subset of the Context. As
a result, context frameworks should provide mechanisms to
allow applications to express their interest in certain con-
text properties. Additionally the context framework should
be prepared to create bindings between context properties
and the corresponding information sources. Such bindings
should hide applications from the lower-level protocols or
services used to actually obtain the context property val-
ues. Besides, some directly measured context properties are
not suitable to use as-is; there can be properties that need
a previous transformation or processing to be useful for an
application. For example, an application might require GPS
coordinates as input in some cases, but in others it might
need the place name. As a consequence, a context frame-
work should perform automatic context data transforma-
tions on behalf of the application.

To know which are the interests of each user it is needed
to generate a user profile. The first option is to explicitly
ask what are user’s interests with a small survey form. This
method is known to be high quality if the survey is correctly
designed, but in general users dislike filling forms, especially
when the benefits are not immediately obvious. In addition,
users do not feel safe by submitting personal information to
untrusted servers [11].

Collaborative filtering techniques analyze user behavior to
create implicit user profiles. They take into account which
links are more frequently clicked or the time spent on each
one to extrapolate user interests without them even noticing.
Users with similar interests can also be grouped into classes.
Once the individual has been classified, assumptions about
his interests can be made based on those of the whole group.
This introduces the concept of social profiling, which can be
valuable when a new user connects to the application for the
first time and fewer details about him are available.

Commercial search engines, such as Google or Yahoo, in-
corporate context-independent autocompletion mechanisms
intended to work in the desktop environment. Web based
recommender systems have been successfully applied to mod-
ern online shopping sites, filtering and suggesting between
a huge amount of available products [16]. Wietsma [20]
developed a PDA-based prototype of a recommender sys-
tem. Other works [10] have applied recommender systems
to simplify mobile web search by offering syntactic query
suggestions. However, none of them has combined seman-
tic autocompletion mechanisms with context-aware recom-
mendation in a mobile environment, which it is the main
contribution of our research.
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Figure 1: Mobile Web Search Framework.

Improving web search by exploiting contextual informa-
tion has been previously studied, although there is no agree-
ment on context interpretation and scope. There are authors
that consider the history of visited pages as web search con-
text. Following that criteria, they try to analyze and extract
the most important keywords found in those pages, and use
them to ensure that further queries will keep on subject [12,
4]. While these solutions can improve web search on the
desktop, mobile search should go beyond, considering addi-
tional variables like location, conditions of the environment,
points of interest nearby, weather situation or guessed user
intentions [5].

Query expansion and substitution is a technique that can
be used to include context information during the search
process. The mechanism works as follows: Just before launch-
ing the query it is completed with additional terms [5, 13].
Such terms can be synonyms, disambiguating subject-related
words or special keywords aimed at clarifying the intention,
like how to, ways to, what is. Another way to contextualize
search is by re-ranking the obtained result set according to
certain properties: subject, proximity to user’s location or
intentions.

The use of the above methods will ensure that the most
contextually-relevant results will appear on top of the re-
sult set, thus reducing reducing the number of interactions
needed to find proper results [19, 11].

3. OUR PROPOSAL
To overcome previously described limitations, we have

designed a framework to combine different paradigms and
novel ideas from several sources, separated in different mod-
ules which work together. In first place we need to gather
as much information as possible from user and environment.
Then, based on that information, a recommender system se-
lects the most relevant suggestions for user guidance. We
have identified the following modules (See figure 1):

• A Context Model which provides a formal repre-
sentation of the user, the environment and the ac-
cess mechanism, enabling personalization and context-
awareness.

• A Thesaurus, which models semantic relationships
(synonym, broader, narrower, related) among the spe-
cific concepts managed by the search system.

• An Ontology which describes additional properties
that each thesaurus concept may have. They are used
to offer additional options to let the user choose instead
of type.

• A Semantic Query Construction Assistant in-
tended to recommend best-suitable options in context
to avoid users from typing, and thus personalizing the
search process.

• A Personalized Search Engine which makes use of
all information available (the query, selected thesaurus
concept, ontology values) to find relevant results. To
obtains results it makes use of a traditional web search
engine which maintains a web page index.

• A User Interface prototype adapted to the peculiar-
ities of mobile devices, which makes use of all previous
modules to provide an easier user interaction.

Our system is capable of suggesting search terms based on
concepts of the thesaurus instead of words. The outcome is a
more abstract level of recommendation as the system adapts
to the user ideas, decoupling the system from any specific vo-
cabulary. This solution ameliorates traditional approaches,
which are restricted to syntax comparisons. Furthermore,
we filter out concepts that are unlikely to be chosen in that
specific concept, so less options are recommended, just the
most relevant ones. In addition, each thesaurus concept is
complemented with an ontology describing additional prop-
erties of that idea. Once the user have selected a specific
concept, additional options are automatically presented so
he just have to choose to refine his query instead of typing.
For instance, if the user has selected the concept “Restau-
rant”, a form with two fields “price” and “type of cuisine”
will automatically appear.

3.1 Context Model for Personalization
The foundation for a context-aware application is a for-

mal context specification which maintains all properties and
provides a standard access to them. We used an ontology to
describe all entities of the domain together in a taxonomy.
We have decided to use the OWL language [15] as it is a
widely accepted industry standard and therefore there are
several open source tools (parsers, reasoners, editors, third-
party ontologies) available to ease development.

We propose an extensible Context Model divided into
three layers (Figure 2):

• Directly Fetched Properties. These are properties
that can be automatically gathered from context infor-
mation sources. For example the location coordinates
obtained from a GPS sensor or the born year directly
specified by the user.

• Derived Properties. These are “implicit” properties
that can be inferred or calculated from other proper-
ties. They constitute a higher abstraction layer on top
of the directly fetched properties, so they are more
easily comparable against application-level ideas. For
example, taking into account the location coordinates
provided by a GPS, the system can obtain the name
of the country and region from a GIS service, or it can
calculate the user’s age based on his born year.
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Figure 2: Context Layered Model.

• Application-Specific Properties. Applications might
want to add or redefine properties by using their own
rules, in order to extend the base context definition
to better fit concrete application needs. For example,
an application can define a property called nice day
given the temperature and the atmospheric condition.
All these definitions are identified at application de-
sign time, but at some point it may be required to
differentiate what is a nice day according to the coun-
try. This operation can be easily accomplished by just
modifying the corresponding rule.

The SWRL [6] language has been used for rule definition
as it is the natural extension to OWL when rule-based de-
pictions are needed. SWRL provides syntax and semantics
to define rules affecting OWL classes, properties and indi-
viduals.

For example, we can define the following rule to create
the abstract property called niceday :

weather(?w) ∧ temperature(?w, ?t) ∧ greater(?t, 20)

∧ sunny(?w, true)→ niceday(?w, true)

where ?w refers to a OWL individual which belongs to the
weather OWL class, temperature is a property which links
a weather instance to its temperature, greater is a SWRL
built-in function, sunny is a boolean property, and niceday
is the new defined property.

Once the context framework is defined, we proceed to
identify the relevant classes, properties and relationships for
any context-aware mobile web search application:

• User Profile This category contains all the implicit and
explicit properties related to the user and his circum-
stances. We model several properties such as the pre-
ferred language, the date of birth, the place where he
lives, etc. A FOAF [1] extension is used for user profile
modeling.

• Device and Browser This set of properties describe the
characteristics of the user’s device and web browser.
Such properties make it possible to distinguish be-
tween a cell phone and a PDA, or between a rich
AJAX-enabled browser and a first generation limited
browser. Detailed information is crucial in order to
take full advantage of hardware capabilities, for exam-
ple devices with bigger screens can show more rows of
a table at the same time than those with smaller ones.

restaurant

hamburguer

place

supermarket

recipefood

pizza

Figure 3: Thesaurus concept lattice example.

• Geospatial Context We model the current user location
not only in terms of geographic coordinates but also
in terms of the kind of place where the user is (on the
seaside, on the countryside, at an airport or station,
etc.). Such contextual information can be later used
to promote the tasks which are more typical in those
certain situations.

• Environment Conditions These are properties that model
the surrounding environment. In our prototype we
model mainly the weather conditions gathered from
Web Services published on the Internet. For example,
if the user is searching for leisure activities and the
weather is rainy, our recommender system should sug-
gest theater or cinema, rather than outdoor activities.

• Date and Time They are useful to restrict behavior at
certain times or dates. For instance, there is no point
in going to the cinema at eight o’clock in the morning.
In addition it can be used to trigger certain actions
when certain events occur.

3.2 Semantic Context-Aware Recommendations
We propose a context-aware thesaurus-based recommender

system as a natural approach to semantically guide the query
construction process.

In first place, we need a domain-specific thesaurus for rec-
ommendations, which must cover all relevant concepts of the
domain and their relationships. We distinguish among three
kind of relationships: broader, narrower and related. For ex-
ample, “place” is a broader term for “restaurant” and “mu-
seum”; and “food” is related to “restaurant”. Each concept
also includes synonyms that may refer to the same idea, for
example the concept “soccer” will also include the synonym
“football”. Moreover, these words can be specified in dif-
ferent languages without altering thesaurus structure, thus
simplifying internationalization.

For our working prototype, we have tailored a thesaurus
that covers concepts in the domain of transport, leisure and
public services. In our opinion, they are the more likely
to be useful in a generic-purpose mobile web search engine.
Our thesaurus implementation has been defined in RDF [14]
using the SKOS [7] vocabulary. It contains 100 concepts and
about 200 relationships. As an example, figure 3 depicts one
branch of our thesaurus.

The recommendation scenario works as follows. Once the
user has typed one or more characters, the recommender sys-
tem asks the thesaurus for concepts which start with those
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Figure 4: Thesaurus-based suggestions tree.

letters, of course including synonyms. Then it applies a
rule-based filter to discard concepts which are not likely to
be useful in that situation and to promote concepts that
seem more interesting. The remaining concept list is sorted
using a score system based on previous selections, and the
best ones are selected to be shown. Instead of showing just
the word for each concept, we also include its broader, re-
lated and narrower concepts in the same line, arranged in
a tree view (as depicted in Figure 4). Finally, the user can
select whichever option he deems more appropriate to fulfill
his needs.

The first major feature of our proposal is context-awareness.
Based on our context definition, we specified which are the
best conditions for each thesaurus concept to be useful, and
in which cases it could be directly discarded. These con-
ditions are set by using SWRL rules, because the Context
definition and the thesaurus can be joined together, and be
seen as a unique ontology. This filter considerably reduces
the number of options, whereas the remaining ones are the
most interesting for a specific context.

A typical thesaurus rule matches the following pattern:

concept(?c) ∧ context(?t) ∧ {conditions(?t)}
→ isSuitableInContext(?c, ?t)

Then, the isSuitableInContext property specifies which con-
cepts are considered adequate in that specific context in-
stance. Likewise, a property called isNotSuitableInContext
asserts which concepts will probably be useless and should
be discarded. The knowledge engineer is in charge of iden-
tifying under what conditions concepts are favorable or un-
desirable, based on his expert experience.

Our solution can also be used to solve sense ambiguity
within queries. A common example of sense ambiguity is
the word jaguar, which could refer to the animal, the car
manufacturer or the Apple Operating System among others.
Each of the senses has its own thesaurus concept, as they are
homographs but represent completely different ideas. When
there are two or more ambiguous options to recommend,
the system offers all of them in separate lines, each one with
its own relationships. In this case, the broader is really
important to let the user distinguish every single meaning.
For the jaguar example, the word will appear three times,
one with animal as broader, another with Car Manufacturer
and the last one with Operating System. When the user
selects one, the system knows univocally to which one he
refers in the thesaurus, and annotates the concept identifier
to later expand the search engine query with disambiguating
terms.

Figure 5: Thesaurus concept and its ontological
properties.

The last step of data acquisition is the use of the ontol-
ogy to gather more information about user intentions and
requirements. The ontology is designed to provide addi-
tional properties of the thesaurus concepts, together with
their common values. Once the user selects a single con-
cept, the system constructs a form to ask the user for more
details, as shown in Figure 5. This can be used to construct
a more concrete query which reduces ambiguity, but it is
also a way of explicit user profiling, as the user is who spec-
ifies which options he prefer. In this case the user will be
prompted to fill a small and query-specific form which takes
just a few seconds and causes a direct effect on results. This
beats other explicit solutions, which require users to fill big,
generic, boring and time-consuming forms.

3.3 Personalized Search Engine
The semantic query construction assistant module is able

to simplify user input task, but it also gathers a fair amount
of extra information. We need to describe how to convert
this information to a suitable format that will be processed
on top of a traditional web search search engine.

There are two simple ways to employ all gathered informa-
tion to affect search results. The first one is doing query ex-
pansion, given the selected thesaurus concept and the fields
from the ontology, we can construct a new query by adding
new terms to the user-typed query before accessing the tra-
ditional search engine. Another option is analyzing provided
results after they are returned by the search engine, to filter
out those which do not match user intentions. In this work
we focus on the first one, query expansion.

The first consideration to take is that the user has a text
field to type his own query in a traditional manner. Of
course the system must be able to provide results even if any
thesaurus concept or ontology option was selected. There-
fore, the user query will have higher priority over the rest of
the gathered information.

If the user selected one thesaurus concept we can profit
that information to drive the search. For example we can
add its synonyms and related concepts as optional terms,
so web pages matching those subjects will gain weight in
the search engine scoring system. This approach is interest-
ing when a huge number of web pages is available, because
it provides more specific results. On the contrary, when
the amount of provided results is too scarce, we can try to
launch a secondary query by substituting the main concept
by one of the related ones. Of course this will result in a
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performance and quality decrease, but this option is better
than wasting user time and bandwidth usage to show a No
results found webpage.

3.4 Enhanced User Interface
The heterogeneity of Mobile devices and browsers have led

us to build a user interface that adapts to the capabilities of
the target delivery context. For latest mobile browsers and
devices, such as Windows Mobile PDAs or Apple’s iPhone,
we based it on HTML 4, AJAX and Javascript. For con-
ventional mobile phones it has been degraded gracefully to
XHTML-MP, providing a minimal but at the same time
functional user experience. In every case, we tried to take
full advantage of the screen and to minimize de number of
clicks needed to navigate through the interface.

For enhanced web browsers we propose a tab-based search
interface (see Figure 5): the first tab contains query terms
and suggestions, the second one search results, and the last
one allows the user to browse and modify some of the context
properties, like current location, language, or situation (at
work, at home, on a trip). When any of the search conditions
change, the results tab is automatically updated to reflect
those changes.

The search query tab contains an input box where the
user can type his query in the traditional way. We wanted
to maintain the traditional interaction flow to prevent the
user from feeling lost. However, while he is typing, all the
concepts (and related ones) that match the entered letters
will appear on a tree view. Then he can select any of the
suggested concepts (coming from the thesaurus), and finally
additional options like concept properties (coming from the
ontology) will appear (see Figure 5).

With regard to the implementation, it is important to
note that we have taken advantage of the AJAX capabil-
ities present in enhanced devices. For example, we mini-
mize the traffic between the device and the server, making
the user interface more responsive. We have also developed
a browser plugin for the Windows Mobile Platform which
provides access to Context information only accessible from
the device, such as the GPS coordinates. Once they are ob-
tained, the client properties are sent to the server, and they
will be incorporated to the context definition as any other
property.

4. EVALUATION
We invited 12 people, divided in 3 groups, to evaluate our

prototype. The group A was composed by students in the
first year of MsC in Computer Science; the second group,
B, was integrated by IT technicians, and the third group,
C, users not familiar with the mobile environment. We let
them interact with our system using a real mobile device
for a few minutes until they got used to it. Then we asked
them to search for different kinds of information, including
both subjects present and absent in the thesaurus. Finally
they fulfilled a small survey containing questions regarding
their user experience, particularly about the usefulness of
the autocompletion system.

The most important point we wanted to test by using
this evaluation was the level of satisfaction of final users.
All members of our test groups found our suggestion system
useful and intuitive, and they were able to use the system
without trouble. They had the chance to directly compare
the needed effort to type queries with our recommender sys-

tem and without any aid tool. They agreed that the seman-
tic recommender system reduces typing time and allows to
use the system easier.

Less skilled people did not expect suggestions to appear,
so they did not realize at the first time about the autocom-
pletion feature. For that reason, we insist in the importance
of maintaining the traditional search flow unmodified (type
query, click on search button, browse results), while at the
same adding the new features. When those users finally
discovered the power of autocompletion they were the most
amazed, as less skilled people normally needs even more time
to accomplish a task in the absence of a recommendation
system.

We also wanted to know their opinion about the multi-
tab design applied to mobile web search, which permits to
switch between the query/autocompletion page and the re-
sults page. They constructed the query with the autocom-
pletion system, and then browsed the result page. When
the results were not good enough to satisfy their informa-
tion need, they naturally returned to the autocompletion
tab to refine the query. They found easier to select another
thesaurus concept or edit any of the ontology options rather
than typing a new query from scratch. Indeed, users typi-
cally need several refinement iterations to reach their results,
so our system let the users save even more time.

Our experiments revealed that the response time was longer
than expected. In fact users got nervous and started switch-
ing tabs before waiting to load which resulted in even longer
waits. For that reason we reduced load time by saving a
local copy of each tab on the client side, minimizing the
interactions with the server; now when the user is switch-
ing between tabs, and no option has changed, the cached
content is used, therefore saving bandwidth and time.

5. CONCLUSIONS AND FUTURE WORK
We have described the limitations experienced by mobile

web search users, focusing on lack of personalization and
unconvenient input modes. We have developed a semantic
context-aware autocompletion mechanism, based on a lay-
ered Context Model, a thesaurus to represent the subject
domain, and an enhanced user interface. Our results show
that these techniques provide a richer search experience.

We based our work on existing ideas from diverse research
areas, like contextual applications, recommender systems
and information retrieval query expansion. Then we stud-
ied how to join all of them together and construct a working
prototype, which serves as proof of concept for the feasibility
of the integration.

We have highlighted the importance of context modeling
as the basis to provide personalization within mobile web
search. Our proposed Context Model meets all the require-
ments imposed by a mobile web search environment. This is
a first step towards a personalized access to the vast content
of the World Wide Web. We proposed SWRL rules in order
to extend de powerfulness of the context definition, allowing
knowledge engineers to capture real world facts in a explicit
manner.

We have observed that the thesaurus is a useful tool for
several steps in the search process. It serves as guide for the
recommender system providing the concepts of the domain,
it is also useful to disambiguate user intentions and it can
be easily annotated with rules to distinguish under what
conditions each concept will be more or less interesting.
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Our prototype is currently in an early phase and there is
still a lot of research to do. We are working on integrat-
ing advanced user profiling algorithms to characterize user
intentions in a more precise way, because knowledge about
user is a fundamental piece in improving the relevancy of the
results obtained during the recommendation process. We
are also working on the personalized search module, analyz-
ing different options of query expansion and result scoring
to know how they improve search results.
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ABSTRACT 

The large volume of user generated content, although sometimes 

amateurish, represents a valuable source of information for 

audiovisual service providers. For example, companies and 

organizations can efficiently get feedback from consumers 

observing their online interaction with social media providers. 

Offering accurately personalized services is possible now, since 

users provide more personal information about themselves openly, 

which was previously much more difficult to perceive and 

measure.  

In PHAROS, we aim at exploiting the new and freely available 

data to improve users’ online experience with respect to their 

interaction with new media. We focus on building technologies, 

which bridge the gap between the availability of information (both 

in form of descriptions of content, such as annotations, and user 

interests and preferences) and the use of it, for augmenting 

traditional search and retrieval methods or for personalization 

purposes. In this paper, we describe how this external information 

can be brought into PHAROS and how it is used to support users, 

also describing the multiple components supporting this process.  

1. INTRODUCTION 
The amount of data available on the Web, in organizations and 

enterprises, is multiplying and data is increasingly becoming 

audiovisual. Search has become the default way of interacting 

with content and the ever-increasing data complexity leads to the 

necessity of a coherent approach to the growing variety of 

audiovisual formats, standards and tools. Users find themselves 

overwhelmed by the multitude of new audiovisual search tools, 

while businesses are at loss for stable direction. The growth of 

data volume is rapidly shifting to audiovisual content, yet the 

technologies that allow processing and retrieval of this content are 

either mainly experimental, or only vaguely capable of handling 

true queries and content. Audiovisual search is therefore one of 

the major challenges for organizations and businesses today, and 

search-based technologies which can provide contextually 

relevant, integrated and scalable access to distributed and 

heterogeneous collections of information are essential. 

The PHAROS1 European Integrated Project (Platform for 

searcHing of Audiovisual Resources across Online Spaces) aims 

at addressing these challenges and developing an innovative 

audiovisual technology platform, which takes user and search 

requirements as key design principles and is deeply integrated 

with user and context technologies. One of the objectives of the 

project focuses on the analysis, design and development of 

context and user technologies taking into account personalization 

and adaptability. This allows a social audio-visual interaction 

model to be integrated into the search engine, rather than using a 

traditional non-participatory information access model. PHAROS 

creates user interaction models where live user traffic continually 

improves the user experience via core primitives such as social 

network analysis or ranking based on trust. 

The rest of the paper is organized as follows: In Section 2 we 

address the progress over the current state-of-the-art in different 

audiovisual search techniques focusing on user context. We 

continue in Section 3 with the description of the methodology 

used in PHAROS for personalization. Then, in Section 4 we 

present the architectural aspects of the PHAROS platform which 

support personalization. All modules are described in detail, also 

presenting the underlying algorithms. We finally conclude the 

paper in Section 5. 

2. PROGRESS OVER STATE-OF-THE-ART 
To achieve these ambitious objectives, PHAROS extends the 

state-of-the-art in the areas of core search technologies, as well as 

context and user technologies. 

Regarding core search technologies, both XML search and 

content-based search are relevant. Previous work has addressed 

representation and semantic interoperability [6], as well as XML 

retrieval [4], [8]. Content based retrieval uses features of 

multimedia objects to facilitate their retrieval. [2], [10] focused 

exactly on this topic. However, emerging types of search patterns 

require both XML and content-based search to be integrated and 

made mature enough for industrial exploitation. PHAROS extends 

the state-of-the-art in this area by developing a scalable search 

platform with advanced query brokering to orchestrate 

audiovisual information access combining pluggable content-

                                                                 
1 http://www.pharos-audiovisual-search.eu/ 
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based matching engines and schema agnostic XML based search 

kernels. 

Context and user technologies have been tackled from various 

points of view: social media [9], [7], spam detection and ranking 

[3], [5] as well as security, trust and privacy [1]. PHAROS 

addresses all these aspects and more specifically focuses on 

exploiting user actions and interactions in personal and public 

spaces to provide advanced and semantically rich 

recommendations and personalized ranking algorithms. User and 

community profiles enable extreme precision for search, and 

exploit all kinds of user-generated metadata. Advanced spam 

detection algorithms, suitable for personalized ranking, are also 

provided and new lightweight forms of content protection are 

investigated.  

3. PERSONALIZATION IN PHAROS 
PHAROS is placed in a good position with respect to the new 

Web: there is a lot of momentum in users annotating and tagging 

audiovisual sources. However, there is a gap between the 

availability of this information and efficient exploitation for the 

purposes of improved access to desired content. Further, 

personalization has been known to suffer from the bootstrapping 

problem, where the experience of a new user can be 

unsatisfactory. In addition, there are other avenues of user 

information where users express their strong and personal 

opinion. This is the world of blogging – a very popular Web 2.0 

phenomenon. Other public spaces including social networking 

sites and online forums are also rich sources of information about 

people and their preferences. The vision of PHAROS would be 

well served by creating technologies to bridge the aforementioned 

gap. For this purpose, in PHAROS, we currently take into account 

two types of important social media which is increasingly popular 

over the Web today: social annotations and weblogs. 

Social annotation refers to the user-supplied tags, which are 

textual labels, to a piece of information on the Web, such as a 

picture, blog entry, a video clip etc. With the vast development of 

Web 2.0, social tagging has been a powerful and important feature 

provided by many social media applications, such as Flickr2, 

Del.icio.us3, and Last.fm4. Consequently, large volume of social 

annotation data can be collected easily, which enables reliable and 

accurate knowledge discovery. The knowledge embedded in such 

user-supplied annotation data is believed to be useful in many 

applications. Therefore, in PHAROS, we also investigate this: in 

particular, we focus on studying the usage patterns between users 

and social annotations. We then further explore the usage of 

discovered patterns in personalized search and recommendations. 

Recently, weblogs have become one of the dominant forms of 

self-publication on the Internet. A weblog, or “blog”, is 

commonly defined as a Web page with a set of dated entries, in 

reverse chronological order, maintained by its writer via a weblog 

publishing tool. The contents of entries (posts) are discussions 

and observations ranging from the mainstream to the very 

personal. The fast-growing popularity of the blogosphere offers 

new chances and challenges for Web search. For example, besides 

searching blogs, we can also analyze weblog communities, as a 

                                                                 
2 http://www.flickr.com/ 

3 http://del.icio.us/ 

4 http://www.last.fm/ 

representative of our target audience, to predict the effectiveness 

of new recommendations. In PHAROS, by using weblogs we aim 

at discovering communities, which consist of blog users 

discussing similar topics in a certain period of time. We then 

analyze the properties of the identified communities, such as the 

information diffusion patterns in a community, to create accurate 

and detailed community profiles. The discovered community 

information is used to optimize the search and recommendation 

results for individual users. 

4. SOCIAL MEDIA ARCHITECTURE 
We start with the description of the architecture of social media 

modules in PHAROS, to show how the social data is brought to 

the PHAROS platform and exploited for personalization purposes. 

There are five modules in total which belong to three layers: 

Offline Analysis, Storage and Processing, as shown in Figure 1. 

 

 

Figure 1. Architecture of Social Media Modules in PHAROS 

 

There are three modules inside the Offline Analysis layer: User & 

Community Profiler (UCP), Social Networks & Blogspace 

Analysis (SNBA), and Spam Detection, Reputation and Trust 

(SDRT). These modules retrieve related social metadata either 

from the PHAROS platform or from some other sources available 

on the Web. They further process the collected raw data to extract 

useful knowledge for other functionalities in PHAROS. In 

particular, the UCP module focuses on collecting and creating 

complete and accurate user profiles, as well as community profiles 

so that precise and personalized search and recommendation can 

be provided based on these profiles. The SNBA module aims at 

retrieving social network data, such as friendship network and 

blogspace information, and analyzing the social network both 

from a micro-perspective (e.g., the network of a user community) 

as well as a macro-perspective (e.g., the network of all PHAROS 

users). Due to the fact that current social media technologies are 

highly vulnerable to malicious users motivated by both private 

and commercial interests, the SDRT module is developed to 

improve the robustness of the PHAROS platform by detecting 

spam and assigning reputations and trust values to the users 

involved in social interactions. As SDRT is not implemented yet 
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inside the PHAROS platform we will focus only on UCP and 

SNBA as Offline Analysis modules. 

The useful knowledge extracted from social metadata by all of the 

Offline Analysis modules is recorded in the same storage, the 

User & Social Information Storage (USIS). Periodic updates are 

initiated in order to ensure that the stored knowledge is not 

obsolete. Beside the interfaces with Offline Analysis modules, 

USIS also interacts with the Personalization Module (PM), 

located inside the Processing layer, to provide requested 

information for search and recommendation. The PM manifests 

the usefulness of social metadata in PHAROS. Various 

personalization strategies based on different extracted knowledge 

are developed to finally optimize the search results provided by 

PHAROS.  

The details of each of the modules composing the Social Media 

Architecture will be described in depth in the following sections.  

4.1 USIS – User & Social Information Storage 
The User & Social Information Storage (USIS) plays a central 

role inside the architecture of the PHAROS platform, as this is the 

place where all user-related information is stored.  

The functionality of the USIS is divided into the following roles: 

• Metadata storage for PHAROS content objects; 

• User related data storage and processing; 

• External social interaction data storage. 

Metadata Storage. Each PHAROS content object can have 

different types of metadata attached (e.g., tags, comments, ratings, 

and favorites). Each user having an account in the platform will 

be able to enrich content objects with metadata. This metadata can 

be viewed and searched by the users. 

User Related Data. All the information stored in the USIS is 

meant to be later extracted and included into the personalization 

process. User and community profiling information, in form of 

both preferences as well as interaction with the PHAROS 

platform, are stored in here. Several parts build up the user 

profiles and are stored inside the USIS (details are presented in 

Section 4.2). 

External Social Data. Data from external (not residing inside the 

PHAROS platform) sources like social networks or collaborative 

tagging Web sites can be also stored inside the USIS. This data 

can be used by any of the Offline Analysis modules in order to 

extract additional data relevant for PHAROS users or content 

objects.  

4.1.1 Internal Structure of USIS 
USIS is mainly a storage component, a database, providing 

several services depending on different data to be stored or 

requested. Currently, four major storage components reside inside 

the USIS. 

Blog Analysis Storage. Blogs gathered from different sources are 

stored here. These blogs are further processed, and analyzed in 

detail by SNBA extracting interesting features and statistics 

needed by other components (e.g. UCP). The results of the 

analysis are stored in the Blog Analysis Storage as well.  

Interaction Logs. User actions related to querying, receiving 

recommendations, and result handling is monitored by the 

PHAROS platform and are stored at the end of a user session in 

the USIS. Information stored here includes: what query was 

entered by the user, what results were viewed, what results were 

clicked, if the visualization of the results was interrupted 

prematurely (e.g. a video was not viewed until the end), etc.  

User Generated Metadata. All user generated metadata resides 

in this storage component. This includes tags, comments, ratings 

and favorites. Information is stored as to which user added what 

metadata to which content object. In this way the metadata is 

filtered and statistics are computed regarding a user, a piece of 

metadata (e.g. some specific tag), or a content object.  

User Profiles & Groups. User profiles, user-user relationships, 

and user-group memberships reside here. User profiles are 

constructed initially from the personal data a user enters when 

s/he creates his/her profile. UCP adds more data to the profile as 

the user starts using the platform.  

4.2 UCP – User & Community Profiler 
In order to achieve extreme precision in ranking and 

recommending multimedia content, adaptation of the core 

technology to user preferences and specific user contexts is 

necessary. Since most users may be unwilling to explicitly fill in 

and maintain a personal profile or they might not be able to 

specify an accurate profile, automatically inferring interests is 

important. Moreover, for providing high quality personalized 

services, profiles must be kept up-to-date as interests may change 

over time. Accurate user profiles often also depend on the 

community5  a user belongs to. Therefore, inferring user profiles 

has to be complemented with the construction of community 

profiles. The User & Community Profiler (UCP) component is in 

charge of modeling user preferences from both inside and outside 

the PHAROS platform by collecting and automatically inferring 

information about users and communities they belong to. To 

overcome problems associated with modeling and finding 

communities adequately, it builds upon a model of user and 

community actions and interactions in social networks (provided 

by SNBA).  

This module takes advantage of the explicit profile information 

freely provided by the PHAROS users and at the same time 

extends it with publicly available profile data from the services 

indicated by the user. Moreover, interests or preferences are 

implicitly found in concrete user (inter)actions and can thus be 

modeled from logging user interactions and group behavior within 

the PHAROS platform. Given this diverse amount of (raw) data 

about users and communities, the challenge and main focus of 

research activities within this module is to develop advanced 

techniques for building user and community profiles detailed, 

recent, accurate and reliable enough to meet the challenges of 

precise personalized and context-specific retrieval and 

recommendation.  

In detail, the user or community profiles comprise: 

• Explicit user information, given in the account/my profile 

section in the user interface, including basic data about users 

(gender, age, language) as well as some general interests; 

                                                                 
5 We use the term “community” when referring to any external 

social network of people e.g. build on platforms like Flickr; 

Social Group is used when we refer to the groups that users are 

actually building within the PHAROS platform 
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• User generated metadata (tags, comments or favorites) made 

within the PHAROS platform. Metadata in external Web 2.0 

platforms like Last.fm, Del.icio.us or Flickr are analyzed and 

aggregated to infer preferences; 

• Interests of individual user and communities extracted from 

the blogspace; 

• Usage history. Issued queries and click through data from the 

interaction logs are used to show recently accessed resources 

(“charts”) and serve as implicit feedback to infer likes and 

dislikes; 

• Friendship or contact relations between users both inform 

about similarities or common interests and may be used for 

restricting recommendations based on privacy concerns;  

• Similar users (neighbors) are automatically detected by 

combining data about users as described above. 

Since users may have different preferences with respect to 

different situations, users can have multiple user profiles 

comprising the attributes listed – one for each of their various 

contexts (like “work”, “leisure” etc.). For effectively supporting 

distinct user profiles, current active contexts have to be identified 

accurately to add the information to the right place. However, a 

default profile giving all information available is supported. To 

take into account most recent user and community data, profile 

updates are scheduled according to availability of new data.  

4.2.1 Functionalities of UCP 
At the current stage, the UCP module performs the analysis as 

follows.  

Log Analysis. What resources a user searches for, which 

multimedia resources he actually accesses (for how long), whether 

he even recommends them to other people, as well as which 

persons he frequently interacts with, provide a lot of valuable data 

about a user’s topics or preferences and probably typical 

behavioral patterns. In contrast to explicitly provided profile 

information, such implicit feedback to resources and people has to 

be analyzed to infer meaningful and generalizable user attributes 

to optimize personalization.  For example, the user evaluation of 

the result set (skipped and clicked items) helps to infer new 

associated terms by getting keywords from resources implicitly 

judged as relevant. On the other hand, similar resources listened 

to or watched can be exploited to find similar queries or even 

super-ordinate topics. In general, just building the list of 

(recently) seen items - usage history of a user – alone is very 

useful for profiling interests with respect to finding similar users 

or similar resources. Interactions within groups and with friends 

or unknown people are analyzed to model the social network of a 

user which can again be used to infer commonalities and 

preferences. Other patterns to be mined from action sequences 

(like system internal navigation paths) help personalizing view 

settings and creating navigational short cuts as well as to inform 

about general usability issues to be improved. All these extracted 

and inferred information are translated into specific attributes and 

written to the user profile.  

Annotation Analysis. By adding tags, comments or favorites to 

multimedia resources seen within PHAROS, users tell us 

(implicitly) about what they like, don’t like or what topics they are 

interested in, as they organize their resources around it. Therefore, 

Annotation Analysis gathers this kind of data and analyzes it in 

depth to make it available for profiling and search.  

Opinion Mining. For comments, stopword removal and term 

normalization are standard procedures, important keyword 

extraction and Sentiment Analysis / Opinion Mining are more 

advanced techniques. This aims at analyzing any free textual 

annotations about content objects within PHAROS or elsewhere 

on the Internet. From these textual annotations new tastes about 

audiovisual objects are deduced, and the user profile is updated 

with this new knowledge.  

Tag Analysis. Tag analysis comprises first of all normalization 

and the inclusion of alternative, synonymous labels. Also absolute 

and relative frequency information is calculated for individual 

tags as well as co-occurrence relationships that may help to 

dissolve term ambiguities or to refine queries by synonyms / 

strongly associated terms. To exploit the potentially huge effort a 

user already invested in tagging interesting Web pages, songs or 

pictures in one or the other Web 2.0 platforms, tag analysis also 

fetches and analyzes the user’s tags from external sites like 

Last.fm and Del.icio.us.  

Profile Building. Finally, the results of the above mentioned 

single analyses have to be merged and enriched with the 

information explicitly given by the user. Both types of 

information go directly into the profile under the corresponding 

attributes. Note that this may mean merging or resolving conflicts 

about preferred topics identified in the single analyses.  

4.3 SNBA – Social Networks & Blogspace 

Analysis 
The Social Networks & Blogspace Analysis (SNBA) module aims 

at gathering and analyzing social network data coming from blogs 

or friendship networks for discovering additional knowledge 

which can be applied to improve the search and recommendation 

results in the PHAROS platform.  

There are many different types of blogs, differing not only in the 

type of content, but also in the way that content is delivered or 

written. However, for our analysis we focus on personal blogs, as 

this type of blogs – on-going diaries or commentaries by 

individuals – reveal the most personal information about their 

authors. Since all blogs are on the internet by definition, they may 

be seen as interconnected and socially networked. Several features 

permit bloggers to link to each other’s blog pages: the so-called 

“blogrolls” lists one’s favorite blog list in a frame inside their own 

blog page. These links represent other authors’ blog pages that 

this author considers interesting and frequently visits for reading 

and / or directly commenting. In a sense this feature is similar to 

the in-links of a Web page: they inject some importance to the 

blog pages they target by the fact that the author of the blog page 

lists these links on his own and indirectly shows that there are 

some trusted blog sources, worth reading. Besides, the blogrolling 

phenomenon is somewhat reciprocal. By linking to a blog, users 

are increasing their blog's chances of being linked-to by other 

weblogs. These links between Weblogs are the “currency” of the 

Weblog community. The more links one has pointing to his 

weblog, the more likely he gets a growing audience and high 

rankings in search engines. A blogroll helps a user get started 

earning links from other weblogs by expressing affiliations. 

Permalinks are also a possibility to create social links among 

bloggers. Unlike blogrolls which point to a blog page, a permalink 

represents a link to a particular blog post inside a blog page 

(created by the author of this page) and allows other bloggers to 
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use it to jump directly to this blog entry. Given the highly 

dynamic content change of the blog pages, this feature is 

extremely useful if users want to re-read some very interesting 

post, which has already passed from the front page to the archives. 

Given the aforementioned characteristics of the weblogs and of 

the blogosphere, it can be easily seen that blogging is inherently a 

social process, one in which information is created and diffuses 

(or flows), between bloggers due to bloggers influencing and 

being influenced by other bloggers. Consequently, the overall 

objectives of the SNBA module are to: 

• Determine ways to capture what is diffusing; 

• Determine paths for who influences whom; 

• Measure the extent of this influence; 

• Exploit this knowledge for personalized ranking and search. 

We touch each of the objectives presented above, describing the 

components and algorithms for exploiting information diffusion 

for personalized ranking and search. 

4.3.1 Functionalities of SNBA 
Several components build up the SNBA module, such as Blog 

Identification and Blog Ingestion etc. We focus on describing the 

main component Blog Analysis Processing.  

The Blog Analysis Processing component is further divided into 

different sub-modules (see Figure 2). It works as a three-stage 

process: at the lowest level, a static snapshot representation of the 

domain is obtained through the Text Mining Module. Based on 

this, higher level abstractions are built (Topic / Community 

Detection). Then, dynamics and evolution are handled within the 

Information Diffusion Module. Finally, a Profile Extraction 

component aggregate discovered knowledge into users’ as well as 

communities’ profiles.  

 

 

Figure 2. Blog Analysis Processing 

 

The Text Mining Module uses pre-processed blog posts as input 

for the mining process. The output (typically described by a set a 

probability word pairs) is used as input for determining the topic 

of blog posts or of the blogs themselves. Community structures 

are then created from these underlying descriptions. Topics from 

blogs and posts written by a user are taken as representations for 

the user’s and her communities’ profiles. Once communities have 

been detected – the dynamics and evolution of information 

between individuals and communities are mined, in the 

Information Diffusion Module. Finally, the Profile Extraction 

Module updates the created profiles with topic, time and 

information diffusion information etc. Due the space constraints, 

we ignore the discussion of the algorithms employed by each 

module. Interested readers can refer to [21] for the detail.   

4.4 PM – Personalization Module 
The Personalization Module (PM) focuses on providing 

personalized search and recommendation functionality. This 

component is especially important because it unlocks the value of 

personal information stored in USIS in order to improve the 

users’ experiences inside the PHAROS platform. PM takes 

requests from the user and uses information stored in USIS as 

basis for performing personalization. The relevant information 

about user interests is computed offline in the UCP and SNBA 

modules and is then retrieved by PM both during the  

pre-computation of personalized ranking values, as well as during 

the model building phase of the recommendation engine. This 

model is later used to compute recommendations online. 

4.4.1 Internal Structure of PM 
The component architecture has been designed in order to support 

pluggable recommendation algorithms (see Figure 3), which can 

be further developed and extended, for example to adapt the 

behavior of the PM module depending on the context or the user 

data available, and to try to complement some weaknesses and 

strengths of the algorithms themselves, by creating hybrid models 

that combine them.  

In case of the Personalized Search Component there are two 

critical factors for the effective personalization: the quality of the 

user profile and the query processing time. The user profiles are  

pre-computed by UCP and SNBA components and stored in the 

USIS module. The PM module communicates with USIS to fetch 

and transform these profiles into a format required by different 

personalization algorithms. During query time, the system sends a 

request with the original query to PM and receives back a new 

query which includes the necessary modifications for a better 

ranking. 

One part of the PM module is the Query Personalization 

Component (see Figure 3). When a query comes from the system 

via the provided API, the Query Parser transforms it into internal 

format for further processing. The Personalization Selector 

component chooses the requested personalization method and 

asks the Profile Retriever for a necessary user or community 

profile information. The Query Personalizer transforms the 

original query and sends the resulted personalized query back to 

the system for retrieval. 

The Recommender System Component also depends directly on 

the user profiles pre-computed by UCP and SNBA. Once these 

profiles are retrieved from USIS, the Modeler sub-component 

builds a model of the user preferences. The computation is done 

offline periodically and the results are also stored back into the 

USIS. Once the model has been built, the Recommendation 

Engine is ready to compute the necessary list of personalized 

recommendations for a given user, as well as her neighborhood 

(User-based recommendations).  Depending on the context, the 

Recommendation Engine is also capable to recommend similar 

items given a resource (Item-based recommendations). 

PersDB 2008  --  page 47 of 58



Figure 3. Internal Structure of the Personalization Module 

 

The Query Personalization and Recommender System are the 

fundamental components of PM and below we describe each of 

them in detail. 

4.4.2 Query Personalization Component 
In addition to general search capabilities, PHAROS provides also 

personalized search results matching the profile of the user or any 

groups the user belongs to. Personalization involves both a 

filtering and ranking of results. Result filtering is used to limit the 

result set to content, which fits the user’s information need, and 

content the user has permission to view. Ranking of results takes 

into account user and group preferences and ranks content, 

believed to be of high relevance to the user, higher than content 

which is of general interest. Ranking parameters are part of the 

query, and are inserted by the PM module. Different 

personalization techniques are developed within Information 

Retrieval field, like query re-weighting and query expansion, just 

to name a few. We provide details on implemented methods in 

Section 4.4.3. 

The personalized search capabilities assume re-ranking of the 

relevant multimedia items using information about previous user’s 

interactions with the PHAROS platform. All historic usage data, 

such as user’s queries, clicked results, tags in use, etc., should be 

exploited to provide a more precise search output. For providing 

high quality personalized services, user profiles must be kept up-

to-date as interests may change over time. 

4.4.3 Personalized Search Algorithms 
For the Query Personalization Component, we implemented 6 

Information Retrieval algorithms for Relevance Feedback and 

Query Expansion. The algorithms can be used as standalone 

methods as well as in combination with each other. The 

effectiveness of the proposed methods has been proved in general 

text and multimedia retrieval, while their practical usefulness 

depends on available data and quality of the user profiles: 

(1) Fields Reweighting. Results are initially ranked using default 

values for the given query keywords – fields. Based on previously 

collected information regarding user tags and associated ratings an 

algorithm can specify a different weight for each field (query 

keyword) and this information is then used for ranking. The 

frequently used user’s tags and query fields receive higher weights 

and results are biased towards them. This relevance feedback 

technique is based on a well-known Rocchio method [11]. Long-

term feedback is obtained from tag usage of the user or user group 

and is captured from UCP module in the form of a user profile, 

which tracks user-specific weights and other feedback-based 

parameters. The vector-space representation of the query is 

modified so that more important term dimensions are emphasized 

and similarity between query and each item of interest is affected. 

Top-N most similar items are then presented to the user. 

(2) Results Filtering. Create restrictions based on the user profile, 

like removing from the ranked list of results the items that the user 

dislikes. We use Generalized Query Point Movement method 

[12], where previously received poor ratings from a user are used 

to extract tags representing what the user does not like. The result 

items containing such tags are moved down the ranking. The 

algorithm has a similar mechanism to Fields Reweighting 

technique, but negative assessments are used to compute the user 

profiles. This personalization technique is effective when users 

explicitly mark items as uninteresting.  

(3) Query Expansion. Based on the users’ tag usage patterns we 

compute tags’ similarity to each other. Additional keywords are 

added to the query based on preferences from the user profile. 

This method [13]  is one the most frequently used for 

personalization and can significantly increase recall in situations, 

where original query does not have enough results. Query 

expansion is essentially adding new features to the query vector 

and re-ranking the results accordingly. The initial query terms are 

still of higher importance for the ranking. The precise values for 

the algorithm tuning have to be defined based on available data, 

which can be done as soon as user profiles and interaction 

histories are collected. 

(4) Query by Example. For the scenarios when a user wants to 

find items similar to a current one we consider tags similarity. A 

tag description of the selected example is used as a query and a set 
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of results, excluding original item, is returned to a user. The 

personalization part of this method assumes additional query 

modification, based on recent user queries and tags used. A 

method ranks higher the results which are not only similar to a 

given example, but also remind previously seen items. 

(5) Community-Tag Rank. This algorithm is inspired by work on 

Topic-Sensitive PageRank [14] and [15], but based on textual 

similarity rather than link-based similarity. Document model 

includes all the fields that can be extracted for multimedia 

content. We create a community-tag vector for each of the 

identified communities. To make computation scalable we assume 

that number of communities is significantly lower than a total 

number of users. A Community-Tag Rank represents a similarity 

between an item and a community vector, which is composed 

from tag usage statistics of all users belonging to the community. 

Communities can be defined based on explicit membership in 

particular communities and automatically computed clusters of 

users. A user belongs to one or more communities (topic groups) 

and we can compute a linear combination of the community 

vectors for items before query time, which is called Community-

Tag Rank. A single score of Community-Tag Rank is associated 

with each multimedia item—community pair. During the 

computation of the item-query similarity the personalized Object 

Rank vector is used as a factor for ranking as a query-independent 

parameter. 

(6) Community-Rating Rank. This method is similar to 

Community-Tag Rank, but is based on a collaborative filtering 

rather than document model.  A community profile for a 

Community-Rating Rank computation consists of previously 

issued users’ ratings and independent of multimedia item tags. 

This average rating allows re-ranking retrieved items with respect 

to their overall popularity among community members and quality 

of each returned result. As with Community-Tag Rank, this value 

is query independent and it is pre-computed. During query time 

this value is added to the item relevance score. 

4.4.4 Recommender System Component  
Recommender Systems support people by identifying products or 

services they appreciate, helping them to face the information 

explosion, where the complexity of offers exceeds the user's 

capability to survey them and reach an optimal decision. 

Different approaches have been suggested for supplying 

meaningful recommendations to users and some of them 

implemented and deployed successfully over e-commerce and 

services sites like Amazon6, Netflix7, or MyStrands8.  

State-of-the-art Recommender Systems mostly use a variant of 

Collaborative Filtering (CF), an approach to solve the 

recommendation task that relies on historical data gathered from 

users, rather than using the information about content. The 

underlying assumption of the CF approach is that those who 

agreed in the past tend to agree again in the future, capturing 

human behavior: people searching for an interesting item of which 

they have little or no information, tend to rely on friends to 

recommend items they tried and liked.  

                                                                 
6 http://www.amazon.com/ 

7 http://www.netflix.com/ 

8 http://www.mystrands.com/ 

The goal of the PM's Recommender System Component is to 

identify neighborhoods of users with similar taste, based on the 

profiles built by the UCP and SNBA modules and stored in the 

USIS. To build a user's neighborhood, the Recommender System 

Component relies on information of past user interactions (e.g., 

explicit ratings, tags assigned) or implicit grading methods based 

on user behavior actions, such as the time spent on a particular 

item Web page. In order to provide recommendations for a given 

user, the system uses her corresponding neighborhood to compute 

a list of items interesting for her. A similar approach is also taken 

to consider neighborhoods of similar items to be exploited in 

order to provide recommendations of similar contents and 

resources. 

4.4.5 Recommendation Algorithms  
In the case of the Recommender System Component the following 

algorithms are provided, and are also combined with each other to 

provide the target functionality: 

 (1) Tag-aware Collaborative Filtering. It exploits the tag-based 

profiles, in both dimensions (user, tag) and (item, tag) to build 

user and item neighborhoods in order to compute personalized 

recommendations [16]. Tag-based user profiles are defined as 

collections of tags together with corresponding scores 

representing the user’s interest in each of these tags. Once the 

profiles have been computed, they are arranged in a User-Tag 

matrix structure, which is then used to derive the 

recommendations applying CF techniques that group similar users 

in order to suggest them valuable items that in turn have been 

inferred by their associated tags. 

(2) Standard User-based Collaborative Filtering. It supports (1) 

and can also be used alone or as part of other Recommendation 

Engine to exploit different kinds of profiles, and not only explicit 

ratings as in traditional CF [17], [18]. The recommendations for 

each individual user are obtained by identifying a neighborhood 

of similar users and recommending items that this group of users 

found interesting. The design recommendations described by [19] 

have been also considered in the implementation of this 

algorithm. 

(3) Standard Item-based Collaborative Filtering. The 

recommendation task in this case is focused on the items’ 

similarity, rather than on the users’ similarity. It also supports (1) 

and its main objective is to produce a list of recommendations 

given a target item [20]. This recommendation algorithm uses the 

item-to-item similarities to compute the relations between the 

different items. It builds a model that captures these relations and 

then applies this model to derive the top-N recommendations for 

an active user. The model, which at the core is an item-item 

matrix representation, is built based on the original user-item 

matrix of user profiles that reflects their aggregated historical 

information of consumed items. Each item is associated with a 

vector in the users’ space, and these vectors are then used to 

compute the similarity among the items. Once the similarities 

have been computed, for each item, just the most similar k items 

are kept on the model, where k is an input for the algorithm. The 

model computed is used during the recommendation step, where 

the goal is to recommend similar items for a given one. 

5. CONCLUSIONS & FUTURE WORK 
In this paper, we focus on describing social media metadata based 

personalization supported in PHAROS. The vision for PHAROS 
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has an important place for user generated social metadata; the use 

of personalization and recommendation is vital to PHAROS for 

enhancing the user experience. The content based search service is 

served better by an accurate and efficient social based search 

service. Consequently, social media data analysis and processing 

plays an important role in audiovisual online spaces.  

Particularly, we describe four social media related modules 

developed in this project. Two analysis modules, User & 

Community Profiler (UCP) and Social Networks & Blogspace 

Analysis (SNBA), aim at performing analytic study on various 

user-generated social media data and extracting knowledge 

relevant to users’ interests. This extracted knowledge is further 

exploited by the processing module, Personalization Module 

(PM), to enhance users’ personal search experience. A data 

storage module, User & Social Information Storage (USIS), is 

also provided to accommodate not only raw social media data but 

also processed and extracted information from the raw data.  

There are still a few open issues in successful exploring social 

media data for personalization within PHAROS, such as 

scalability and robustness. Our ongoing work include improving 

the algorithms employed by each module to address these issues, 

as well as conducting more research and developing work in 

optimizing the functionalities provided by social media modules 

by large scale. 
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ABSTRACT
We propose an adaptive news video retrieval approach which
is based on the Ostensive Model of developing information
needs. We therefore introduce a news video retrieval system
called NewsBoy which captures the users’ implicit interac-
tions with its graphical interface, extracts terms from visited
video documents and stores them in user profiles. The terms
are weighted based on the type of implicit feedback, multi-
ple interests are identified by clustering the content of the
profile. In this paper, we describe the architecture of the
system and introduce our approach of adding the ostensive
factor to capture the users’ evolving interest. Preliminary
results show the acceptance of the system and highlights
drawbacks.

1. INTRODUCTION
Consuming information has a central impact on the de-

velopment of our society, leading to the transformation from
the industrial to the information age. Newspapers, televi-
sion news broadcasts, the WWW and other sources provide
the society with a vast amount of information, an increasing
percentage of which is in digital format. However, facing this
excessive supply of information sources might overwhelm in-
formation consumers. Hence, there is a need to provide per-
sonalised access to them.

Arezki et al. [1] provide an example to explain the need
of a personalisation service: When a computer scientist en-
ters the search query “java” into a search engine, he is most
likely interested in finding information about the program-
ming language. Other people, however, might expect results
referring to the island of Java in Indonesia or a type of coffee
beans bearing this name. Sebe and Tian [18] discuss that
for providing personalised information based on multimedia
content, sophisticated research in various areas is needed, in-
cluding the acquisition of user preferences and how to filter
information by exploiting the user’s profile.

A classical approach to capture the user’s preferences is
profiling. User profiles can be used to create a simplified
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model of the user which represents his interests on general
topics. Commercial search engines incorporate such profiles,
the most prominent being Google offering iGoogle and Ya-
hoo! offering MyYahoo!. Query expansion is used to gather
the user’s interest and search results are re-ranked to match
their interests.

These services rely on users’ explicitly specifying prefer-
ences, a common approach in the text retrieval domain. By
giving explicit feedback, users are forced to update their
need, which can be problematic when their information need
is vague [21]. Furthermore, users tend to provide not enough
feedback on which to base an adaptive retrieval algorithm
[8]. Deviating from the method of explicitly asking the user
to rate the relevance of retrieval results, the use of implicit
feedback techniques helps by learning user interests unob-
trusively. The main advantage is that users are relieved
from providing feedback. A disadvantage is that information
gathered using implicit techniques are less accurate than in-
formation based on explicit feedback [14].

A challenging problem in user profiling is the users’ evolv-
ing focus of interest. What a user finds interesting on day
A might be completely uninteresting on day B, or even on
the same day. The following example illustrates the prob-
lem: Joe Bloggs is rarely interested in sports. Thus, dur-
ing Euro 2008, the European Football Championship, he is
fascinated by the euphoria exuded by the tournament and
follows all reports related to the event. After the cup final,
however, his interest slowly abates again. How to capture
and represent this dynamic user interest is an unsolved prob-
lem. Moreover, a user can be interested in multiple topics,
which might evolve over time. Instead of being interested
in only one topic at one time, users can search for various
independent topics such as politics or sports, followed by
entertainment or business.

In this paper, we introduce NewsBoy, a personalised mul-
timedia application which is designed to capture the user’s
evolving interest in multiple aspects of news stories. News-
Boy automatically processes the daily BBC One news bul-
letin and recommends news stories by unobtrusively profil-
ing the user based on his interactions with the system. The
news aspects are identified by clustering the content of the
profile. We introduce four different functions that incorpo-
rate the evolving interest of the user and evaluate the effect
of these functions on the profiles.

The paper is structured as follows: Section 2 provides an
overview of related work. Section 3 introduces the architec-
ture of NewsBoy. In Section 4, we introduce our approach
of capturing the user’s interactions by extracting relevant
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terms from results a user interacted with, combining them
with a relevance weighting and storing them in a user profile.
In order to capture the user’s evolving interest, we adopt the
ostensive model to manipulate the weighting of the terms in
accordance to the iteration when they were added to the
profile. Further, we introduce our methodology of cluster-
ing these terms to represent the user’s multiple interests
in different aspects and present a preliminary evaluation in
Section 5. Finally, we discuss the system in Section 6.

2. BACKGROUND
Our work builds on a number of research areas, including

news video retrieval, personalised news delivery and tech-
niques to capture evolving user needs. In the following, we
introduce the state-of-the-art of these areas.

2.1 News Video Retrieval
Nowadays, almost every television channel has its own

news bulletin, indicating that television is a widely accepted
mass media to provide consumers with the latest news. Con-
sequently, processing television news has been an important
research area and much recent work, such as that repre-
sented by the TRECVID [20] research effort, aims to tackle
the difficult problems of content based video retrieval. While
some systems have a particular emphasis on the system side,
other research efforts are looking towards improving state-
of-the-art video retrieval techniques from the user’s point of
view, such as the Open Video Project1.

A number of conclusions can be drawn from these efforts:
first of all, video retrieval is not as sophisticated as its tex-
tual counter part. The reason for this is the so-called “se-
mantic gap” [10], the difference between the low-level rep-
resentation of video and audio data, and the high-level se-
mantics which the user would ideally like to associate with
retrieved data. Furthermore, segmenting and indexing video
is a challenge. Considering a news broadcast as a unit of
retrieval will generate a result list containing whole video
documents. A user must watch or browse through the whole
video to finally find the information he wants, a demanding
approach. Hence, it is necessary to split videos into smaller,
semantically related, segments which should ease the access
of the video data. In text retrieval, techniques have been
developed to identify relevant sections of the text, e.g. [17]
and to segment documents based on these sections. Hence,
users can easily browse through short results to satisfy their
information need. Boreczky et al. [3] argue that television
news consists of a collection of story units which represent
the different events being relevant for the day of the broad-
cast. An example story unit from the broadcasting news
domain is a report on yesterday’s football match, followed
by another story unit about the weather forecast.

Indexing these segments, i.e. based on textual annotations
or visual representations of the segments provides an easy
access to the data collection. A challenging approach how-
ever is to identify these stories a user is really interested in.
The problem will be introduced in the following section.

2.2 Personalised News Delivery
Web 2.0 facilities enable everyone to easily create their

own content and to publish it online. Users can upload
videos on platforms such as YouTube, share pictures on

1http://www.open-video.org

Flickr or publish anything in a weblog. Two direct conse-
quences of this development can be identified: first of all, it
leads to a growing quantity of content presented in a multi-
media format. Secondly, information sources are completely
unstructured and finding interesting content can be an over-
whelming task. Hence, there is a need to understand the
user’s interest and to customise information accordingly.

A common approach to capture and to represent these
interests is user profiling. Using user profiles to create per-
sonalised online newspapers has been studied for a long time.

Chen and Sycara [6] join internet users during their in-
formation seeking task and explicitly ask them to judge the
relevance of the pages they visit. Exploiting the created user
profile of interest, they generate a personalised newspaper
containing daily news. However, providing explicit relevance
feedback is a demanding task and users tend not to provide
much feedback [8].

Bharat et al. [2] create a personalised online newspaper by
unobtrusively observing the user’s web-browsing behaviour.
Although their system is a promising approach to release the
user from providing feedback, their main research focus is on
developing user interface aspects, ignoring the sophisticated
retrieval issues.

Smeaton et al. [19] introduced F́ıschlár-News, a news video
recommendation system that captured the daily evening
news from the national broadcaster’s main TV channel. The
web-based interface of their system provides a facility to re-
trieve news stories and recommends stories to the user based
on his interest. According to Lee et al. [13], the recom-
mendation of F́ıschlár-News is based on personal and col-
laborative explicit relevance feedback. The use of implicit
relevance feedback as input has not been incorporated.

Profiling and capturing the users is an important steps
towards adapting systems to the user’s evolving information
need. In the following section, we introduce the problem of
capturing this evolving need.

2.3 Evolving User Needs
In a retrieval context, profiles can be used to contextu-

alise the user’s search queries within their interests and to
re-rank retrieval results. This approach is based on the as-
sumption that the user’s information interest is static, which
is however, not appropriate in a retrieval context.

Campbell [4] argues that the users’ information need can
change within different retrieval sessions and sometimes even
within the same session. He states that the user’s search di-
rection is directly influenced by the documents retrieved.
The following example explains this observation: Imagine a
user who is interested in red cars and uses an image retrieval
system to find pictures showing such cars. His first search
query returns him several images including pictures of red
Ferraris. Looking at these pictures, he wants to find more
Ferraris and adapts the search query accordingly. The new
result list now consists of pictures showing red and green
Ferraris. Fascinated by the rare colour for this type of car,
he again re-formulates the search query to find more green
Ferraris. Within one session, the user’s information need
evolved from red cars to green Ferraris. Based on this ob-
servation, Campbell and van Rijsbergen [5] introduce the
ostensive model which incorporates this change of interest
by considering when a user provided relevance feedback. In
the ostensive model, providing feedback on a document is
seen as ostensive evidence that this document is relevant for
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the user’s current interest. The combination of this feed-
back over several search iterations provides ostensive evi-
dence about the user’s changing interest.

There are different types of interaction feedback, usually
divided into two categories: explicit and implicit feedback.
Explicit feedback is given when a user actively informs a
system what it has to do on purpose, such as selecting some-
thing or marking it as relevant. Implicit feedback is given
unconsciously. An example is printing out a web page, which
may indicate an interest in that web page. The basic as-
sumption is that during a search, users’ actions are used
to maximise the retrieval of relevant information. Implicit
indicators have been used and analysed in other domains,
such as the WWW [7] and text retrieval [12], but rarely
in the multimedia domain. However, traditional issues of
implicit feedback can be addressed in video retrieval since
digital video libraries facilitate more interactions and are
hence amenable to implicit feedback.

This section introduced the research domains of our work
and argued about the research problem of capturing the
evolving user need in order to personalise news videos in
accordance to the user’s interest in multiple aspects of the
news. In the next section, we introduce NewsBoy, a news
video retrieval system which incorporates the previously in-
troduced research domains.

3. NEWSBOY ARCHITECTURE
NewsBoy is a web based news video retrieval system based

on AJAX technology. AJAX takes away the burden of in-
stalling additional software on each client (assuming that
JavaScript is activated and a Flash Player running on the
client side).
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Figure 1: NewsBoy Architecture

Figure 1 illustrates the conceptual design of the system.
As the graphic shows, NewsBoy can be divided into five
main components, four running on a web server and one,
the user interface, on the client side. The first component is
the data collection which will be introduced in Section 3.1.
The retrieval backend, the second component of NewsBoy,
administers the data collection. We are using MG4J2, an
open source full-text search engine. The third component is
the user interface, which runs on the client side. It will be
introduced in Section 3.2.
2http://mg4j.dsi.unimi.it/

3.1 Data Collection
In the scope of this research, we focus on the regional

version of the BBC One O’Clock news. The programme
covers international, national (UK) and regional (Scotland)
topics, which are usually presented by a single newsreader.
The bulletin has a running time of 30 minutes and is broad-
casted every day from Monday till Friday on BBC One, the
nation’s main broadcasting station. The BBC enriches its
television broadcast with Ceefax, a closed caption (teletext)
signal which provides televisual subtitles for the deaf. The
data collection we used for this study consists of 115 edi-
tions of the daily news broadcast which have been recorded
constantly over the past few months. Based on its textual,
visual and audio features, we segmented the news videos
into semantically related story segments, the unit of retrieval
in our system. The index contains 2963 stories, which are
aligned with 4.1 non-stopword-terms on average.

During the period of the recording, various main events
have been dominant in the news. In relation to the eval-
uation date of this study (April 2008), these events can be
classified into (1) latest, (2) recent and (3) past events. Here,
we give some examples:

1. Latest events (current week): Discussions about air
travel.

2. Recent events (2 month ago): Reports about the In-
ternational Bank Crisis.

3. past events (>4 month ago): Christmas time

3.2 Interface
Figure 2 shows a screenshot of the NewsBoy interface,

its features will be described in the following section. The
interface can be divided into three main panels, search panel
(A), result panel (B) and clustered search queries (C).

In the search panel (A) users can formulate and carry out
their searches by entering a search query and clicking the
button to start the search. BM25 [16] is used to rank the
retrieved documents in accordance to their relevance to a
given search query.

Once a user logs in, NewsBoy displays the latest news
stories in the result panel (B). Moreover, this panel lists
retrieval results. The panel displays a maximum of 15 re-
sults, further results can be displayed by clicking the an-
notated page number (1). The results can be sorted in ac-
cordance to their relevance to the query or chronologically
by their broadcasting date (2). Results are presented by one
keyframe and a shortened part of the text transcript. A user
can get additional information about the result by clicking
on either the text or the keyframe. This will expand the
result and present additional information including the full
text transcript, broadcasting date, time and channel and a
list of extracted named entities3 such as persons, locations
and relative times (3). In the example screenshot, the sec-
ond search result has been expanded. The shots forming
the news story are represented by animated keyframes of
each shot. Users can browse through these animations by
clicking on the keyframe. This action will center the selected
keyframe and surround it by its neighboured keyframes. The
keyframes are displayed in a fish-eye view (4), meaning that

3We use the General Architecture for Text Engineering
(http://gate.ac.uk) for the extraction of named entities.
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Figure 2: NewsBoy Interface

the size of the keyframe grows larger the closer it is to the
focused keyframe. In the expanded display, a user can also
select to play a video or to mark it as interesting. Clicking
on “play video” starts playing the story video in a new panel
(5).

NewsBoy recommends daily news videos based on the
user’s multi-aspect preferences. These preferences are cap-
tured by unobtrusively observing the user’s interactions with
the NewsBoy interface. By clustering the content of the
profile NewsBoy identifies different topics of interest and
recommends these topics to the user. The personalisation
approach will be introduced in Section 4. The interface
presents these topics as labelled clusters on the left hand
side of the interface (C). Each cluster represents a group of
terms, hence, when a user clicks on the term, a new search is
triggered, using the selected terms as a new query. Results
are displayed in the result panel.

On the top of the interface, the users can edit their profile
by clicking on their username (6). This action will pop up
a new frame where the top weighted terms of each cluster
are listed, and the user can edit terms or the aligned weight-
ing. Furthermore, the user can manually add new weighted
terms.

In this section, we introduced the basic components of a
video retrieval system, the frontend and the backend. These
components enable the users to explore the indexed data col-
lection. In the next section, we introduce our methodology
of enhancing the users’ search sessions by adapting the out-
put of the system to their personal interests.

4. PERSONALISATION
The aim of NewsBoy is to deliver daily news videos based

on the user’s interest in multiple aspects of daily news. This

procedure raises some research questions. The main ques-
tion is how the user’s interest can be captured and repre-
sented. Furthermore, we are interested how multiple inter-
ests can be identified. A common approach is to interpret
the user’s interactions with the system’s interface and to
represent this interest in a profile. The process of gather-
ing these interactions will be introduced in Section 4.1. Our
approach of incorporating the user’s evolving interest will
be shown in Section 4.2. In Section 4.3, our approach of
identifying multiple interests will be explained.

4.1 Relevance Feedback
O’Sullivan et al. [15] evaluated the use of explicit and im-

plicit relevance feedback to recommend video stories. Their
results indicate that user profiles created by exploiting im-
plicit feedback are as valuable as profiles which are created
by incorporating explicit feedback only. Hopfgartner and
Jose [9] identified various implicit indicators of relevance in
video retrieval when comparing the interfaces of state-of-
the-art video retrieval tools. The most common features
they identified were: clicking on a keyframe to start play-
ing a video, browsing through a result list, using the sliding
bar to go through a video, highlighting additional metadata
and playing a video for a certain amount of time. However,
analysing which of these implicit measures are useful to infer
relevance has rarely been done.

NewsBoy tries to capture the users’ interests by exploit-
ing the implicit relevance feedback captured from users in-
teracting with the interface introduced in Section 3.2. The
interface provides various possibilities to provide implicit rel-
evance feedback. Users interacting with it can:

• Expand the retrieved results by clicking on it.

• Play the video of a retrieved story by clicking on “play
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video”.

• Play the video for a certain amount of time.

• Browse through the keyframes.

• Highlight additional information by moving the mouse
over the keyframes.

Any of these interface features can be seen as a possible
indicator of relevance. Which one of these implicit measures
are good indicators of relevance is not clear though. While
Claypool et al. [7] identified time spend on a web site as be-
ing a valid implicit indicator of relevance in the text domain,
Kelly and Belkin [11] criticise the time factor as indicator
in the video domain. They assume that information-seeking
behaviour is not influenced by contextual factors such as
topic, task and collection. Their study cast doubt on the
straightforward interpretation of dwell time as an indicator
of interest or relevance. Hence, we decided to ignore the
playing duration as a positive indicator and focus on the
remaining indicators only.

Further research has to be done to find the strongest in-
dicators in order to identify optimal an weighting for each
interface feature. This is, however, not the focus of this
work. Based on the analysis of implicit relevance feedback
weight by Hopfgartner and Jose [9], we therefore define a
static value for each possible feature:

W =

8>>><>>>:
0.1, when a user uses the highlighting feature

0.2, when a user starts playing a video

0.3, when a user browses through the keyframes

0.5, when a user expands a result

For capturing the users’ interest, NewsBoy extracts the
(non-stopword) query terms aligned with the story item
a user interacted with, combines them with the feedback
weighting and stores the weighted terms in the profile. The
following example explains the process: A user retrieved a
list of stories and decides to expand the first result. Cap-
turing this action, NewsBoy extracts all terms aligned with
this result, combines them with the weighting 0.5 in a vec-
tor and submits this vector to the profile. A more in-depth
description of this profiling is given in the following section.

4.2 Profile
User profiling is the process of learning the user’s interest

over a longer period of time. In this section, we introduce
our approach of capturing the users’ interest and introduce
the representation of this interest in the profile. The profile
is the fourth component of the NewsBoy system illustrated
in Figure 1. Furthermore, we introduce our approaches of
representing the user’s evolving focus of interest.

4.2.1 Profile Learning and Representation
Several approaches have been studied to capture a user’s

interest in a profile, the most prominent being the weighted
keyword vector approach. In this approach, interests are
represented as a vector of weighted terms where each di-
mension of the vector space represents a term aligned with
a weighting. The weighting of the terms will be updated
when the system submits a new set of weighted terms to the
profile starting a new iteration j. Hence, we represent the
interaction I of a user i at iteration j as a vector of weights

~Iij = {Wij1...Wijv}

where v indexes the word in the whole vocabulary | V |.
We create a weighting Wij by capturing the implicit rel-

evance feedback provided by a user i in the iteration j with
the interface introduced in Section 3.2. W has been intro-
duced in detail in Section 4.1. Representative terms from rel-
evant story segments will be extracted and assigned with an
indicative weight to each term, which represents its weight
in the term space. In our model, we extract non-stopwords
v from the stories a user interacted with in the iteration i
and assign these terms with the relevance weighting Wijv.

Furthermore, we represent the profile ~Pi of user i as a
vector containing the profile weight PW of each term v of
the vocabulary:

~Pi = {PWi1...PWiv}

4.2.2 Ostensive Factor
The simplest approach to create a weighting for each term

in the profile is to combine the weighting of the terms over all
iterations. This approach is based on the assumption that
the user’s information interest is static, which is, however,
not appropriate in a retrieval context. The users’ informa-
tion need can change within different retrieval sessions.

Campbell and van Rijsbergen [5] propose in their osten-
sive model that the time factor has to be taken into account,
i.e. by modifying the weighting of terms based on the iter-
ation they were added to the user profile. They argue that
more recent feedback is a stronger indicator of the user’s in-
terest than older feedback. In our profile, the profile weight
for each user i is the combination of the weighted terms
v over different iterations j: PWiv =

P
j ajWijv. We in-

clude the ostensive factor, denoted aj , to introduce different
weighting schemes based on the ostensive model. We have
experimented with four different functions to calculate the
weighting, depending on the nature of aging, the functions
will be introduced in the following paragraphs.

4.2.2.1 Constant Weighting.

aj =
1

jmax
(1)

The constant weighting function does not influence the os-
tensive weighting. As Equation 1 illustrates, all terms will
be combined equally, ignoring the iteration when a term was
added or updated. The constant weighting can be seen as a
baseline methodology which does not include any ostensive
factor.

4.2.2.2 Exponential Weighting.

aj =
CjPjmax

k=1 Ck
(2)

The exponential weighting as defined in Equation 2 gives a
higher ostensive weighting to terms which has been added
or updated in older iterations. It is the most extreme func-
tion as the ostensive weighting of earlier iterations decreases
distinctly.

4.2.2.3 Linear Weighting.

aj =
CjPjmax

k=1 Ck
(3)
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Equation 3 defines the linear weighting function. The osten-
sive weighting of earlier iterations decreases linearly. This
function linearly reduces the ostensive weighting of earlier
iterations.

4.2.2.4 Inverse Exponential Weighting.

aj =
1− C−j+1Pjmax

k=1 1 − C−k+1
(4)

The inverse exponential weighting defined by Equation 4 is
the most contained function. Compared to the other intro-
duced functions, the ostensive weighting of early iterations
decreases more slowly.

4.3 Capturing Multiple Interests
All components introduced in the previous sections com-

municate through the NewsBoy Broker, the fifth component
of the system illustrated in Figure 1. The task of the bro-
ker is to personalise the system by identifying the user’s
multiple interests in different aspects. Our methodology of
identifying these aspects is introduced in the following.

our approach is based on the assumption that news topics
consist of a number of unique terms which appear in all
stories about one topic. News stories about the topic football
e.g. might consist of unique terms such as “goal”, “offside”,
“match” or “referee”. We capture implicit feedback when a
user interacts with these stories. The terms of these stories
will be extracted and, combined with the implicit weighting,
stored in the profile. Hence, as the particular terms are
added with the same weighting, they are close neighbours
in the profile’s vector space.

In this work, we sort the terms in the user’s profile accord-
ing to their profile weighting and identify the terms which
have the five biggest distances to the neighbouring terms.
We use these identified weighted terms to cluster the re-
maining profile terms accordingly. Each cluster represents
one aspect of the user’s interest.

The top weighted terms of each cluster are used as a label
to visualise the aspect on the left hand side of the NewsBoy
interface (marked (C) in Figure 2). In this work, we limited
the number of terms to six. Clicking on this label hence
triggers a retrieval with the top six weighted terms of this
aspect being used as search query. The effect of the different
weighting factors on the user’s profile will be illustrated in
the following section.

4.4 Weighting Effect
In Section 4.2.2, we introduced four different profile weight-

ing approaches that capture the evolving user need by incor-
porating the ostensive model. In Section 4.3 we introduced
our approach of clustering the terms based on this weight-
ing. In this section, we illustrate the effect of the different
weighting factors on the user’s profile by simulating users
interacting with the NewsBoy interface over several days.
Simulations are an alternative methodology of evaluating
different approaches to user-modelling. In this methodol-
ogy, we assume that a user is interacting on the system. If
such a user is available, he or she will carry out a set of ac-
tions to retrieve or look at relevant results. The aim of our
simulation will be introduced in the following section.

4.4.1 Simulated User Interaction

Const. Exp. Lin. Inv. Exp.
C Term W Term W Term W Term W

1

people 1 people 1 news 1 people 1
flight 0.99
fuel 0.99
change 0.99
connecting0.99
passengers0.99
houston 0.99

2 christmas 0.74 christmas 0.77 morning 0.20 thousand 0.84
people 0.19

3 thousand 0.64 thousand 0.67 recent 0.14 christmas 0.76
past 0.14

4

house 0.48 twenty 0.49 sounds 0.11 twenty 0.65
twenty 0.48 house 0.49 home 0.10

company 0.10
thousands 0.10

Table 1: Top four clusters in the simulated user pro-
file for the constant, exponential, linear and inverse
exponential ostensive weighting functions.

In order to get an insight into the effect of the four differ-
ent ostensive weighting functions on the clusters, we simu-
late a user interacting with stories of each day of our data
collection. In a first step, we retrieve all stories on a partic-
ular date, starting with the oldest recording available. We
then simulate a user interacting with these results by ran-
domly selecting x stories, where 0 ≤ x ≤ (# of stories).
In the next step, the simulated user can (a) start playing a
video, (b) expand a result and (c) use the highlighting fea-
ture. Each of these events has an equal probability of 33%.
Furthermore, the simulated user browses up to ten times
through the keyframes, each browsed with a probability of
10%. Each simulated action will start the profiling process
which has been introduced in Section 4.1. The same simula-
tion is repeated for all days of our data collection. A possible
search session i.e. could be: A user expands a result, plays
a video and browses through three keyframes.

We are aware that a user does not “randomly” select re-
sults and that the probability of using a feature is not always
50%. However, our aim is to evaluate the different ostensive
weighting functions, which are not user-dependent. Hence,
we decided to base our simulation on a simplified user model.

4.4.2 Profile Content
Exploiting the simulated user profile, we clustered the

terms based on the different ostensive factors. Table 1 il-
lustrates the four top clusters for the constant, exponential,
linear and inverse exponential ostensive weighting functions.

Assuming that the profiles represent the interests of the
simulated user, some observations can be stressed when ana-
lysing the top terms stored in the profile. While the profiles
which are weighted using the constant, exponential and in-
verse exponential functions show similar clusters, the biggest
difference can be spotted in the profile which incorporates
the linear ostensive function. This profile seems to empha-
sise latest events, a news story related to air flights. Past
events such as christmas do not appear in the top clusters of
this profile, however, the term “christmas” has a high rank-
ing in the remaining profiles, indicating that past events are
still represented in the clusters.

The example profiles hence confirm our expectation that
the introduced ostensive factors will set a different empha-
sis on added terms, based on the time when the terms were
added. However, which of these profiles represents the user’s
current interest cannot be answered by this study. A mean-
ingful interpretation requires knowledge about the users pref-
erences which can only be achieved by a user study. In the
following section, we introduce a subsequent user study we
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performed.

5. PRELIMINARY EVALUATION
In order to evaluate which clusters created by the different

profiling methodologies can best represent the user’s multi-
ple interests, we designed a user-centred evaluation. Nine
participants of different nationality volunteered to include
NewsBoy as an additional source in their daily news gather-
ing process. For one month, the participants used NewsBoy
to browse through the displayed news stories or to discover
the data collection.

As we used our own data collection which grows every day
and do not provide the users with pre-defined search top-
cis, an evaluation based on precision and recall, as common
in evaluation campaigns such as TRECVID is not possible.
Therefore, we aimed to evaluate the models based on the
user’s satisfaction.

5.1 Participants
The participants were mostly postgraduate students and

research assistants with a background in computing science.
The group consisted of eight male and one female with an
average age of 27.7 years and advanced proficiency with En-
glish.

Prior to the experiment, each participant was asked to fill
out a questionnaire so that we could measure their expe-
rience of dealing with news media and personalisation sys-
tems. The most cited topics of interest are sports, poli-
tics, science and entertainment. The group follow news by
watching television once or twice a month and mainly use
the internet as their daily source of information. The BBC
and Google News websites were mostly cited as favourite
source, followed by websites of national newspapers such as
www.spiegel.de or www.elmundo.es. Furthermore, they use
the internet to occasionally watch news videos online. The
most common search strategy that the participants men-
tioned was browsing their favourite websites.

The questionnaire revealed a clear tendency towards news
personalisation systems. However, the participants stated
that they are sensitive about the type of feedback they have
to provide in order to get personalised news. Privacy is con-
sidered to be an important issue, hence, the participants
would not agree to provide details about the income or the
private address. For the group, providing explicit relevance
feedback is an unpopular approach, supporting our method-
ology of relying on implicit relevance feedback to adapt to
the user’s interests.

Summarising, the participants mostly rely on the internet
to follow daily news and are open-minded towards person-
alisation systems.

5.2 Objective Profile Evaluation
During the study, the users performed an average of 9.8

implicit actions each day which triggered the profiling pro-
cess introduced in Section 4.3. Hence, the ostensive weight-
ing of the profile terms introduced in Section 4.2.2 is com-
puted over 190 iterations on average which strongly influ-
ences the different weighting approaches.

Table 2 shows the average number of terms when cluster-
ing the terms of the users’ profiles based on their ostensive
weighting as introduced in Section 4.3. As can be seen, clus-
tering the terms based on their ostensive weighting results in
different clusters, supporting the assumption that the previ-

Const. Exp. Lin. Inv. Exp.
C Mean Median Mean Median Mean Median Mean Median

1 1 1 1.125 1 5.625 1 1 1
2 1.125 1 2.375 1 9.625 7 1 1
3 2.375 1 7.25 1 16.25 19.5 1.75 2
4 184.375 2 34.125 4 8.375 3.5 2.25 2
5 166.375 7.5 434.5 9.5 24.125 22.5 3.75 2.5

Table 2: Number of terms of the top four clusters
C for each ostensive weighting

ously introduced ostensive factor influences the users’ pro-
file. However, two drawbacks can be seen in the table. First
of all, many clusters consist of few words only, indicating
that the introduced methodology of identifying multiple in-
terests is not appropriate and needs to be further investi-
gated. Moreover, some clusters consist of a large amount
of terms which hardly represent any specific interest of the
users.

While the table confirms the effect of the ostensive model
on user profiling, a conclusion about the quality of these
profiles cannot be drawn. Therefore, we further focused on
the users’ subjective opinion about the content of the profile.
The evaluation will be introduced in the following section.

5.3 Subjective Profile Evaluation
First of all, we were interested to identify which osten-

sive weighting function best represents the users’ interests.
Hence, we used the constant weighting factor introduced in
Section 4.2.2 to create the user profile. Thus, the weighting
of the terms in the profile is not influenced by an ostensive
factor. At the end of the experiment, we clustered the user
profile based on the exponential, linear and inverse exponen-
tial factor, respectively, and asked the participants to judge,
which of these clustered profiles represents their information
need best.

In the first question, we asked our participants to judge
which profile is the most efficient one in clustering the terms
in accordance to their semantic meaning. This question was
aimed to analyse whether our assumption that news stories
consist of a number of unique terms which appear in all
stories of the topic can be applied to identify semantically
related terms. The participants did not highlight any partic-
ular profile, indicating that the different weighting schemes
semantically cluster terms in a similar way.

In the next question, we asked them to judge which pro-
file identified best their interest. Here, the participants pref-
ered the profile created using the inverse exponential weight-
ing function, followed by the constant weighting and linear
weighting. The exponential weighting received the lowest
ranking, indicating that the approach of giving a higher
weight to most recent feedback does not cover the user’s
long term interest.

In a follow up question, we were interested if the order of
the clusters in the profiles represent the participants’ interest
accordingly. Again, the users showed a tendency towards
the inverse exponential weighting function, followed by the
constant and linear weightings.

Concluding, the questionnaires revealed a slight prefer-
ence towards the model which privileges most recent feed-
back.

6. DISCUSSION AND CONCLUSIONS
In this paper, we address two main research challenges

in the field of information retrieval. The first problem we
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introduce is how to capture and represent a user’s evolving
information need. As Campbell [4] argues, the users’ infor-
mation need can change within different retrieval sessions
and sometimes even within the same session. The user’s
search direction is directly influenced by the documents re-
trieved. So far, capturing and representing this dynamic
user interest is an unsolved problem. Another question is
how the different aspects of a user’s interest can be repre-
sented. A user can be interested in various aspects, which
also might evolve over time.

In order to study these problems, we introduced NewsBoy,
a news video retrieval system which delivers news videos
based on the user’s interest. NewsBoy captures the user’s
interactions by extracting relevant terms from results a user
interacted with. These terms are combined with an explicit
relevance weighting and stored in a user profile. A user’s in-
terest in multiple aspects is identified by clustering the pro-
file based on this weighting. We introduced four different
models that incorporate the ostensive model to capture the
evolving interest of the user. For each model we show their
effect on user profiling by conducting a simulated user study.
In addition to this, we performed a user study to evaluate
these models based on the user’s satisfaction. The study in-
dicates the user’s preferences against the model which priv-
ileges most recent feedback.

In conclusion, our results have highlighted that the os-
tensive model can be incorporated to represent the users’
interests in video retrieval. While we present in this paper a
preliminary user evaluation, we plan to further analyse the
users’ feedback, i.e. by exploiting the log files, which should
help to investigate in the introduced research questions.
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